ЦИФРОВЫХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ ВХОДНЫЕ УСТРОЙСТВА

May 12, 2010 by admin Комментировать »

Принципиальная схема и характеристики входного устройства ЦИП определяют входные параметры прибора в целом. Основными характеристика­ми входного устройства являются входное сопротивление и входная емкость. Эти параметры определяются функциональным построением входного устройст­ва. Существуют приборы, входное сопротивление которых не является постоян­ным в течение цикла измерения. К этой группе относятся приборы с использо­ванием во входной цепи устройств с последовательной отрицательной обратной связью, а также с АЦП поразрядного кодирования, если вход АЦП является непосредственно входом прибора.

Часто во входных устройствах используются приборы с добавочным резис­тором или аттенюатором на входе прибора, определяющим его входное сопро­тивление на постоянном токе.

Входные аттенюаторы (делители). Они служат для расширения пределов измерения, ббычно их выполняют на микропроволочных резисторах (погреш­ность 0,02 — 0,05%). В последнее время стали применять резисторы С2-13, С2-29Т и резисторы на базе пленочной технологии (погрешность 0,01 — 0,02%). Погрешность делителя не устраняется в процессе калибровки прибора и может в несколько раз превосходить погрешность преобразователя или прибора в целом, В связи с этим обычно приводят данные о погрешности прибора на ос­новном пределе .и отдельно указывают погрешность делителя.

В приборах, предназначенных для измерения переменного напряжения, вопрос о расширении пределов измерения решается сложнее; здесь необходимо использовать частотно-независимые делители. Емкостные дeлиfeли имеют огра­ниченное применение. Чаще используют универсальные резистивно-емкостные делители, которые могут применяться как на постоянном, так и на переменном токе. Схема такого делителя приведена на рис. 11. Точность деления на посто­янном токе определяется примененными прецизионными резисторами. Коэффи­циент деления не будет зависеть от частоты переменного напряжения при ра­венстве постоянных времени параллельных RС-цепочек, т. е. C1R1 = C2R2 (тЛ = = т2).

Коэффициент деления

K= (Zl+Z2)/Z2= (R1+R2)/R2 = (С1+С2)/С1.

clip_image002 clip_image004

Рис. 11. Схема ча­стотно – компенсиро­ванного делителя

Рис. 12. Структурная схема входного устройства частотомера

Постоянные времени т1 и т2 в процессе настройки выравниваются под­строенными конденсаторами. При рациональном выборе типов конденсаторов и тщательной настройке частотно-компенсированного делителя погрешность его на переменном токе может быть сведена к 0,03 — 0,05%.

Грамотно разработанная схема и конструкция входного устройства в боль­шой степени определяет помехоустойчивость прибора, а также точность изме­рений при наличии значительных помех, особенно при малых измеряемых сиг­налах.

Входные устройства частотомеров. Во входном устройстве частотомера входные сигналы нормируются по амплитуде и крутизне фронтов. Здесь же выбирается соответствующий предел измерения сигналов по уровню и осуществ-. ляется коммутация полярности входных сигналов.

На рис. (12 представлена структурная схема входного устройства частотома­ра. Оно состоит из аттенюатора 1, усилителя постоянного тока 2, формирова­теля 3 и усилителя переменного тока 4 (для измерений синусоидальных сиг­налов).

Формирователь преобразует входной сигнал в прямоугольные импульсы с крутыми фронтами и нормированной амплитудой, обеспечивает определенную помехозащищенность прибора. Как правило, формирователи строятся по схеме триггера Шмитта, усилителя-ограничителя или формирователя на туннельных диодах. На рис. 13 представлена принципиальная схема формирователя, вы­полненного на транзисторах VT1 VT4. Формирователь может быть использо­ван до частот 15 МГц.

Схема формирователя, работающего до частот примерно 50 МГц, представ­лена на рис. 14. Формирователь включает в себя эмиттерный повторитель на транзисторе VT1, цепь туннельного диода R4, VD1 и усилитель-ограничитель VT2, VT3. Ненасыщенный режим работы транзисторов усилителя-ограничителя VT2, VT3 и управление этим каскадом с помощью импульса, вырабатываемого туннельным диодом VD1, способствуют повышению быстродействия формирова­теля.

К основным параметрам усилителей входных устройств относятся входное сопротивление, допустимая неравномерность частотной характеристики и требуе­мый коэффициент усиления. Необходимое входное сопротивление обеспечивается при использовании эмиттерного повторителя или каскадов на полевых транзисторах. Высокое входное сопротивление можно получить также, включив резис­тор нужного сопротивления последовательно в цепь базы входного KacKaflav Наличие такого последовательно включенного резистора позволяет эффектив-но ограничивать уровни исследуемых сигналов. Допустимая неравномерность-частотной характеристики должна быть не более ±2 дБ. Для обеспечения тре­буемой АЧХ необходимо использовать местную отрицательную обратную связь.

Принципиальная схема усилительного каскада приведена на рис. 15. Кас­кад собран на транзисторах VT1 и VT2 с непосредственной связью. Транзис­тор VT1 включен по схеме OK, VT2 — по схеме ОЭ. Применение местной и общей отрицательных обратных связей позволяет получить хорошую стабильность-характеристик каскада при колебаниях питающего напряжения и температуры, Входное сопротивление каскада в основном определяется сопротивлением ре­зистора R1.

clip_image006

Рис. 13. Принципиальная схема формирователя (до 15 МГц)

clip_image008

Рис. 14. Принципиальная схема формирователя (до 50 МГц)

Коэффициент усиления всего тракта определяется исходя из необходимого­уровня сигнала, обеспечивающего надежное срабатывание формирователя (око­ло 0,5 В для синусоидального напряжения) и минимального входного напря­жения (обычно 0,1 В). Таким образом, коэффициент усиления в рабочей поло­се частот должен Выть около 6 (с 20%-ным запасом).

clip_image010 clip_image012

Рис. 15. Принципиальная схема входного усилительного каскада частотомера

Рис. 16. Принципиальная схеме» масштабного усилителя

Входное устройство вольтметров. Оно состоит из аттенюатора и масштаб­ного усилителя. Масштабирование напряжения осуществляется с помощью ат­тенюатора, если измеряемое значение превышает основной предел, и с помощью масштабного усилителя, если измеряются напряжения, в 3 — 10 раз меньше ос­новного предела. Иногда масштабный усилитель используется на всех преде­лах, но на пределах, больших основного, его коэффициент передачи равен 1. Масштабные усилители строятся на базе ОУ, характеризующихся большим (от 4 до 500 тыс.) коэффициентом усиления при разомкнутой петле обратной свя-«и. Принципиальная схема масштабного усилителя представлена на рис. 16.

При наличии на входе измеряемого напряжения Ux через резистор R1 те­чет ток Ix=Ux/R1. Напряжение обратной связи, снимаемое с делителя R3, R4, компенсирует этот ток. Благодаря малому дрейфу и большому коэффициенту усиления усилителя его выходное напряжение определяется только внешними элементами (резисторами):

K=UBblx/Ux=(R2/Rl)l(R3+R4)/R3),

где К — коэффициент передачи масштабного усилителя.

Изменение диапазона измерений осуществляется изменением номинала ре­зистора R1. Все резисторы должны иметь малый ТКС. Входное сопротивление усилителя определяется сопротивлением резистора R1.

При использовании масштабного усилителя только для расширения преде­лов измерения в сторону малых значений, а также для обеспечения высокого входного сопротивления, независимого от предела, целесообразно использовать ОУ в неинвертирующем включении. При этом можно использовать его со встроенными полевыми транзисторами (К140УД8, К284УД1 и т. п.) или с внеш­ними. Принципиальная схема масштабного усилителя представлена на рис. 17. Его коэффициент усиления

K=(R5+R6)/R6=1+R5/R6.

Установка нуля прибора осуществляется обычно в узле масштабного усилите­ля.

Входными устройствами миллиамперметра и омметра являются многопре­дельные шунты и добавочные эталонные сопротивления соответственно.

Оставить комментарий

Устройство витков выходе генератора импульсов микросхемы мощности нагрузки напряжение напряжения питания приемника пример провода работы радоэлектроника сигнал сигнала сигналов сопротивление схема теория транзистора транзисторов управления усиления усилитель усилителя устройства частоты