Источники напряжения и тока

June 26, 2010 by admin Комментировать »

в схеме на рис. 1.4 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым вы­деленная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивле­ние») — хотя бы потому, что у него внутри есть провода определенной тол­щины.

Но на самом деле не провода служат ограничивающим фактором. В главе 4 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, может сообразить: чем мощнее источник, тем у него меньше должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом внутреннем сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит— если вы попытаетесь запустить от набора батареек типа АА какой-нибудь крупный прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то прибор, конечно, не заработает, хотя формально напряжения должно хва­тать, — напряжение «сядет» почти до нуля. А вот от автомобильногб акку­мулятора, который гораздо мощнее, все получится как надо.

Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения. Физики пред­почитают название идеальный источник э.д.с. (электродвижущей силы), но на практике это абстрактное понятие используется реже, чем менее строгое, но всем понятное «напряжение». К ним относятся в первую очередь все ис­точники питания: от батареек до промышленной сети. Кстати, для снижения внутреннего сопротивления вовсе не обязательно увеличивать мощность ис­точника напряжения до бесконечности — к тому же эффекту приводят спе­циальные меры по стабилизации напряжения, с которыми мы познакомимся в главе 9.

Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обла­дать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечного малого) может обладать бесконечным выходным сопротив­лением, довольно трудно, и в быту такие источники вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напря­жения (не тока!), как R1 на рис. 1.4, при условии, что сопротивление нагруз­ки мало (R2«R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разбе­ремся позднее.

clip_image002

clip_image004

Рис. 1.5. Источники тока и напряжения: а — обозначение идеального источника напряжения; б —- обозначение идеального источника тока; в —• эквивалентная схема реального источника напряжения; г —- эквивалентная схема реального источника тока

Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.5, а и б. Не перепутайте — логики в этих обозначениях немного, но так уж принято. А т. н. эквивалентные схемы (их еще называют схемами заме­щения) реальных источников приведены на рис. 1.5, в и г, где Rb обозначает внутреннее сопротивление источника.

Теперь нам придется отвлечься от схем и разобраться с тем, как оборудовать себе рабочее место. Теоретические знания — это важно, но на практике все познается куда лучше.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты