Параллельное и последовательное соединение резисторов

June 26, 2010 by admin Комментировать »

Это хотя и довольно простая тема, но очень важная. Правила всего два: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые, по определению из главы /, есть величины, обратные сопротивлению (см. рис. 5.3). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях — при последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются, что равносильно сложению сопротивлений. При параллельном соеди­нении, наоборот, равны падения напряжений U, а складывать приходится то­ки , что равносильно сложению проводимостей. Если вы не поняли вышесказанное, то посидите над рис. 5.3 с карандашом и бумагой и выведите выражения закона Ома для каждого из случаев — и все станет на свои места.

clip_image002

Рис. 5.3. Последовательное и параллельное соединение резисторов

Из этих определений вытекает несколько практических правил, которые по­лезно заучить:

? при последовательном соединении:

• пара резисторов имеет сопротивление всегда больше, чем сопротивле­ние резистора с большим номиналом (правило «больше большего»);

• если номиналы резисторов равны, то суммарное сопротивление ровно вдвое больше каждого номинала;

• если номиналы резисторов различаются во много раз, то общее со­противление примерно равно большему номиналу (типичный слу­чай упоминался в главе 1: в примере на рис. 1.4 мы игнорируем со­противление проводов, так как оно много меньше сопротивления резисторов);

? при параллельном соединении:

• пара резисторов имеет сопротивление всегда меньше, чем сопротивле­ние резистора с меньшим номиналом (правило «меньше меньшего»);

• если номиналы резисторов равны, то суммарное сопротивление ровно вдвое меньше каждого номинала;

• если номиналы резисторов различаются во много раз, то общее со­противление примерно равно меньшему номиналу (это также можно проиллюстрировать на примере рис. 1.4, где мы игнорируем наличие вольтметра, включенного параллельно R2, так как его сопротивление намного больше сопротивления резистора).

Знание этих правил поможет вам быстро оценивать схему, не занимаясь ал­гебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопро­тивление составляет от их арифметической суммы— приблизительно во столько раз снизится их общее сопротивление по отношению к меньшему. Проверить это легко: пусть одно сопротивление имеет номинал 3,3 кОм, вто­рое — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30% меньше, чем 3,3 кОм, то есть 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3+6,8, то есть общее сопро­тивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2). Если мы проверим результат, получен­ный такой прикидкой в уме, точным расчетом, то мы получим в результате очень близкое значение 2,22 кОм.

В большинстве случаев нам такой точности и не требуется — помните, что и сами сопротивления имеют разброс по номиналу, и в большинстве обычных схем допуски на номиналы стандартных компонентов могут быть довольно велики (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные пара­метры, то с помощью стандартных компонентов вы все равно этого не добье­тесь — параметры будут «гулять» (в пределах допусков, естественно) от дуно­вения ветерка из форточки, и в таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на резистор 1,1 кОм — не наш метод!

Оставить комментарий

Устройство витков выходе генератора импульсов микросхемы мощности нагрузки напряжение напряжения питания приемника пример провода работы радоэлектроника сигнал сигнала сигналов сопротивление схема теория транзистора транзисторов управления усиления усилитель усилителя устройства частоты