Полевой транзистор — источник постоянного тока

June 10, 2010 by admin Комментировать »

Полевой транзистор по существу является источником постоянного тока и его вольт-амперная характеристика аналогична характеристике электронной лампы – пентоду. В простейшем случае, изображенном на рис. 14.2, пользователю доступны только два вывода и устройство обыч­но представляется как диод. Из характеристики такого диода, также по­казанной на рисунке, видно, что в большей части рабочей области ток имеет почти постоянную величину. Если последовательно с этим прибо­ром включить прецизионный резистор, как показано на рис. 14.3А, то на нем появится постоянное напряжение, которое можно использовать как опорное при условии, что нагрузка имеет входное сопротивление значи­тельно превышающее сопротивление включенного резистора. В стабили­зированных источниках питания, это требование легко выполняется, если нагрузкой является компаратор или буферный каскад.

Рис. 14.2. Диод постоянного тока. Фактически это полевой транзис­тор, у которого соединенные вместе затвор и исток образуют катод «диода». Большинство диодов постоянного тока сделаны из полевых транзисторов с каналом л-типа. Специально разработанные устройства этого типа называются токостабилизирующими диодами (CRD).

Лучших результатов можно достичь, если вместо обычных полевых транзисторов использовать специально разработанные полевые диоды, которые оптимизированы с точки зрения вольт-амперных характеристик. Эти устройства имеют только два вывода потому, что затвор и исток со­единены у них внутри. В настоящее время имеется более 30 типов дио­дов, рассчитанных на токи от 200 мкА до 5 мА. Минимальное рабочее напряжение очень низкое – порядка 1 – 3 В, а прямое напряжение про­боя часто выше 100 В. Таким образом, эти устройства хорошо подходят для широкого класса различных схем. Большое достоинство этих специ­ально созданных токостабилизирующих диодов (CRD) состоит в том, что

clip_image002

при их изготовлении можно достичь нулевого температурного коэффи­циента, объединяя CRD с резистором, имеющим тот же самый, но про­тивоположного знака температурный коэффициент. Обычно такой ре­зультат достигается при расчетных токах около 0,5 мА.

clip_image004

Рис. 14.3. Два варианта применения токостабилизирующего диода (CRD). (А) Регулировать опорное напряжение в этой схеме, можно выбирая соответствующий прецизионный резистор. (В) Эта схема дает прецизионное опорное напряжение, обеспечивая оптимальный уро­вень тока опорного диода для получения низкого температурного коэффициента.

Прекрасные результаты дает объединение CRD со стабилитроном, ZF^-диодом или прецизионным стабилитроном, как показано на рис. 14.3В. В этом случае можно получить температурный коэффициент 0,001 процента в интервале температур от О до 100’С. Для достижения опти­мальных результатов и CRD-диод, и прецизионный стабилитрон должны иметь нулевой температурный коэффициент при токе около 0,5 мА.

Чаще всего встречается комбинация С/?/)-диода и обычного стаби­литрона. CRD-диод в качестве источника постоянного тока имеет чрез­вычайно высокое сопротивление по переменному току. Стабилитрон или другой источник опорного напряжения наоборот, имеет очень низ­кое сопротивление переменному току. Когда объединяются два этих прибора так, как показано на рис. 14.3В, образуется уникальный фильтр нижних частот с частотой среза около нуля. Такая конфигура­ция теоретически предполагает существенное ослабление всех частот переменного тока. Из-за паразитных параметров практически схема дает ослабление до 100 дБ для частот достигающих нескольких сот ки­логерц. Таким образом, эффективно удаляются большинство пульсаций и шумовых компонент, обусловленных нестабилизированным источни­ком питания. В простой схеме на рис. 14.2 выходное сопротивление равно l/g^^, где g обычно точно заданный параметр. В этой схеме ве­личина постоянного тока 1^^^ также обычно точно заданная величина. Модифицированная схема на рис. 14.4А позволяет получить любую ве­личину постоянного тока 1^^^. Кроме того, увеличение в этой схеме со­противления резистора /?, с целью уменьшения тока, приводит, из-за действия обратной связи, к увеличению выходного сопротивления. Каскадное включение транзисторов (рис. 14.4В) позволяет получить на­много более стабильный ток и существенно повысить выходное сопро­тивление по сравнению с однотранзисторной схемой. Для правильной работы схемы необходимо, чтобы ток стока транзистора Q2 был, по крайней мере, в 10 раз больше, чем ток стока транзистора Q\. И важ­но, чтобы напряжение питания стоков обоих полевых транзисторов не меньше, чем вдвое превышало их напряжение смыкания (насыще­ния) Fp, величину обычно точно известную для полевых транзисторов. Этот критерий фактически применяется и в схемах с одним транзис­тором.

clip_image006

Рис. 14.4. Источники стабильного тока с регулируемой величиной тока.

(A) Схема с одним полевым транзистором. Максимальный ток полу­чается при Л = 0.

(B) Каскадное включение двух полевых транзисторов. Эта схема дает лучшую стабилизацию и более высокое динамическое сопротивление, чем схема с одним полевым транзистором. В обеих схемах произво­дитель имеет возможность в процессе изготовления получить нулевой температурный коэффициент для Л = О или для другого значения сопротивления.

CRD-mojx удобно использовать как элемент делителя выходного на­пряжения в импульсном стабилизаторе (рис. 14.5). При таком построе­нии делителя сигнал рассогласования не уменьшается, как это имеет место при обычном резисторном делителе (пример такого применения можно найти в усовершенствованной схеме импульсного стабилизатора на рис. 17.15).

clip_image008

Рис. 14.5. Использование С/?/)-диода для получения требуемой обратной связи в ИИП. Эта схема имеет преимущество по сравнению с обычно используемым резисторным делителем: напряжение обрат­ной связи изменяется точно также, как выходное напряжение источ­ника, а не пропорционально ему. Таким образом, изменение выход­ного напряжения на 2 В приводит к изменению напряжения на С/?/)-диоде также на 2 В.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты