Повышающие трансформаторные преобразователи напряжения большой мощности

June 14, 2010 by admin Комментировать »

Повышающие трансформаторные преобразователи напря­жения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сете­вой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повы­шенного напряжения используют автогенераторные преобразо­ватели или трансформаторнью преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора [10.1], преобразующего постоянное напряжение 12 Б в перемен­ное 220 В, показан на рис. 10.1. Преобразователь работает на по­вышенной частоте преобразования — 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для пи­тания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность — до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (бо­лее 10 кГц).

Для трансформатора Т1 использован магнитопровод транс­форматора кадровой развертки (ТВК). Все его обмотки перемо­таны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6…0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16…0,2; обмотка IV — 1000 витков такого же провода. Намотка обмоток I и II ве­дется одновременно в два провода виток к витку. Обмотка III

clip_image002

Рис. 10.1. Схема преобразователя напряжения средней мощности

clip_image004

Рис. 10.2. Схема мощного преобразователя напряжения

наматывается также виток к витку. Обмотка IV — внавал равно­мерно по каркасу.

Повышающий трансформаторный преобразователь напря­жения аккумулятора (рис. 10.2) позволяет получить на выходе на­пряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5A[^ 0.2].

В основе устройства — задающий генератор прямоуголь­ных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая часто­та этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мульти­вибратора подключены двухкаскаднью усилители мощности, по­зволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходнью транзи­сторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифи-цированнью трансформаторы типа ТАН или Г/7/7. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и VT3 — КТ814, КТ816, КТ837; диоды VD1 и VD2 — Д226.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Бт [10.31.

clip_image006

Рис. 10.3. Схема преобразователя напряжения мощностью 100 Вт

На преобразователь подается постоянное напряжение 12 Б от аккумулятора. Его задающий генератор формирует два пара-фазных напряжения с частотой 50 Гц (частота промышленной сети). Напряжения с задающего генератора подаются на два од­нотипных импульсных усилителя, которью коммутируют напряже­ние на первичной обмотке трансформатора Т1. Со вторичной обмотки трансформатора Т1 переменное напряжение 220 Б час­тотой 50 Гц поступает в нагрузку.

Задающий генератор (см. типовую схему узла на рис. 1.1) на основе симметричного мультивибратора отличается использо­ванием диодов, включенных в базовью цепи транзисторов. За счет нелинейности БЛХ диодов выходные импульсы мультивибра­тора имеют незначительные выбросы.

К выходам задающего генератора подключены два одно­типных трехкаскадных усилителя. На вторичной обмотке Т1 полу­чается переменное напряжение 220 Б.

Силовой трансформатор Т1 намотан на Ш-образном магни­топроводе сечением 12 сь/. Первичная обмотка содержит две по­ловины по 240 витков провода НЭП 0,65 мм. Вторичная обмотка имеет 4400 витков провода НЭП 0,25 мм.

Выходные транзисторы VT1 и VT6 установлены на радиато­ры площадью по 100 cf/.

Для защиты выходных транзисторов следует использовать вьюокочастотнью диоды VD1 и VD2 типа КД213, КД2997. Транзи­сторы VT1 и VT6 можно заменить на КТ819ГМ (с радиаторами); VT2 и VT5 — КТ805; VT3 и VT4 — КТ208.

Схема простого преобразователя напряжения, позволяю­щего при питании от автомобильного аккумулятора 12 В получить на выходе напряжение 220 В 50 Гц, показана на рис. 10.4. [10.4]. Максимальная выходная мощность преобразователя — 100 Вт, КПД —до 50%.

clip_image008

Рис. 10.4. Схема простого преобразователя напряжения

Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах VT2 и VT3 {КТ815). Выходные каскады преобразователя собраны на составных транзисторах VT1 и VT4 {КТ825). Эти транзисторы установлены без изолирующих прокладок на общий радиатор.

Устройство потребляет от аккумулятора ток до 20 Л.

В качестве силового использован готовый сетевой транс­форматор на 100 Вт (сечение центральной части железного сер­дечника — около 10 cм^). У него должны быть две вторичные обмотки, рассчитанные на 8 Б/10 Л каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности рабо­тает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц [10.5]. Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 — также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков про­вода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 cм^. Сильноточные токовводы должны иметь сечение не менее 4 мм^.

Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6) [10.6]. Оно потребляет под нагрузкой ток около 2,5 у4.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триг­гере DDI.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах VT3, VT4, нагруженный на трансформатор Т1. За­дающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 S. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразова­теля. Микросхема DDI К561ТМ2 {564ТМ2) и транзисторы предва­рительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной часто­той около 50 Гц.

clip_image010

Рис. 10.5. Схема преобразователя напряжения повышенной мощности

clip_image012

Рис. 10.6. Схема преобразователя напряжения для питания электробритвы

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30…50 Вт. Все ранее су­ществовавшие вторичнью обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим ко­эффициенту трансформации около 20 по отношению к остав­ленной обмотке на 220 В. Если число витков вьюоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до полу­чения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Ка-равкиным [10.7]. Усовершенствования коснулись только задаю­щего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.8) при подключении к автомобильному аккуму­лятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2…3 часов [10.8]. Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (VT3 — VT8), коммутирующие ток в первичной обмотке

clip_image014

Рис. 10.7. Вариант схемы задающего генератора для преобразо­вателя напряжения

clip_image016

Рис. 10.8. Схема преобразователя напряжения на 100 Вт

повышающего трансформатора Т1. Мощные транзисторы VT5 и VT8 защищены от перенапряжений при работе без нагрузки дио­дами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низ­ковольтные обмотки Г и I" имеют по 28 витков провода ПЭЛ диа­метром 2,1 мм, а повышающая обмотка II — 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются ми­нимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9 [10.9]. Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 — R3 и кон­денсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DDI К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы — инверторы /СМО/7-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансфор­матор Т1, повышающий импульсное напряжение до 220 В.

clip_image018

Рис. 10.9. Схема преобразователя напряжения на 300 Вт

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюми­ниевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют час­тоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 S, а их частоту следования, рав­ную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоот­воде с площадью около 200 см^. Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить в эмиттерные цепи транзисторов, то транзисторы каждого плеча можно будет установить на общий теплоотвод.

Нагрузку к преобразователю допускается подключать толь­ко после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразовате­ли имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразова­тель [10.10], к достоинствам которого можно отнести:

• стабилизированное выходное напряжение;

• возможность регулировки величины выходного напряжения в значительных пределах;

• применение широко распространенных элементов;

• использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

clip_image020

Рис. 10.10. Схема повышающего преобразователя 9…12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока

Преобразователь выполнен на транзисторах VT4 и VT5 по классической схеме Ройера. Его питание осуществляется от регу­лируемого стабилизатора напряжения на транзисторах VT1 — VT3. Следует иметь в виду, что транзисторы VT3 — VT5 обяз^-тельнб должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 — VD2 {КС147А и КС133А) можно за­менить на КС182. Максимальный ток нагрузки — до 100 мА.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты