Систематические ошибки

June 26, 2010 by admin Комментировать »

Ошибки измерения делятся на случайные (тот самый шум, о котором шла речь ранее) и систематические. Прояснить, что такое систематическая ошиб­ка, можно на следующем примере: предположим, мы немного изменим в схеме по рис. 13.3 сопротивление резистора R2. При этом у нас на опреде­ленную величину сдвинется вся шкала измерений: показания термометра бу­дут соответствовать действительности, только если мы прибавим (или вы­чтем, неважно) некоторую константу к полученной величине: / = /’ + 5, где / — «правильное» значение температуры (оно все же отличается от истинно­го значения из-за наличия случайной ошибки); /’ — показания термометра; 5 — величина систематической ошибки из-за сдвига шкалы. Более сложный случай систематической погрешности — если мы оставим R2 в покое, а не­много изменим R5, то есть изменим наклон характеристики термометра, или, как еще это называют, крутизну преобразования. Это равносильно тому, что мы умножаем показания на некий постоянный множитель к, и «правильное» значение будет тогда определяться по формуле: t = ht\ Эти виды ошибок но­сят название аддитивной и мультипликативной погрешностей.

О систематических погрешностях математическая статистика «ничего не зна­ет», она работает только с погрешностями случайными. Единственный спо­соб избавиться от систематических погрешностей (кроме, конечно, подбора прецизионных компонентов) — это процедуры калибровки (градуировки), о них мы уже говорили в этой главе ранее.

Случайные ошибки измерения и их оценка

я предполагаю, что читатель знаком с таким понятием, как вероятность. Ес­ли же нет — настоятельно рекомендую книгу [3], которая есть переиздание труда от 1946 г. Расширить кругозор вам поможет классический учебник [2], который отличает исключительная внятность изложения (автор его, извест­ный математик Елена Сергеевна Вентцель, кроме научной и преподаватель­ской деятельности, также писала художественную литературу под псевдони­мом И. Грекова). Более конкретные сведения о приложении методов математической статистики к задачам метрологии и обработки эксперимен­тальных данных, в том числе с использованием компьютера, вы можете най­ти, например, в [4]. Мы же остановимся на главном — расчете случайной по­грешности.

В основе математической статистики лежит понятие о нормальном распре­делении. Не следует думать, что это нечто заумное — вся теория вероятно­стей и матстатистика, как прикладная дисциплина, в особенности, основа­ны на здравом смысле в большей степени, чем какой-либо другой раздел математики.

Не составляет исключения и нормальный закон распределения, который на­глядно можно пояснить так. Представьте себе, что вы ждете автобус на оста­новке. Предположим, что автопарк работает честно, и надпись на табличке «интервал 15 мин» соответствует действительности. Пусть также известно, что предыдущий автобус отправился от остановки ровно в 10:00. Вопрос — во сколько отправится следующий?

Как бы идеально ни работал автопарк, совершенно ясно, что ровно в 10:15 следующий автобус отправится вряд ли. Пусть даже автобус выехал из парка по графику, но тут же был вынужден его нарушить из-за аварии на перекре­стке. Потом его задержал перебегающий дорогу школьник. Потом он просто­ял на остановке из-за старушки с огромной клетчатой сумкой, которая за­стряла в дверях. Означает ли это, что автобус всегда только опаздывает? От­нюдь, у водителя есть план, и он заинтересован в том, чтобы двигаться побы­стрее, потому он может кое-где и опережать график, не гнушаясь иногда и нарушением правил движения. Поэтому событие, заключающееся в том, что автобус отправится в 10.15, имеет лишь определенную вероятность, не более.

Если поразмыслить, то станет ясно, что вероятность того, что следующий автобус отправится от остановки в определенный момент, зависит также от того, насколько точно мы определяем этот момент. Ясно, что вероятность отправления в промежутке от 10.10 до 10.20 гораздо выше, чем в промежутке от 10.14 до 10.16, а в промежутке от 10 до 11 часов оно, если не возникли ка­кие-то форс-мажорные обстоятельства, скорее всего, произойдет наверняка. Чем точнее мы определяем момент события, тем меньше вероятность того, что оно произойдет именно в этот момент, и в пределе вероятность того, что любое событие произойдет ровно в указанный момент времени, равна нулю.

Такое кажущееся противоречие (на которое, между прочим, обращал внима­ние еще великий отечественный математик Колмогоров) на практике разре­шается стандартным для математики способом: мы принимаем за момент события некий малый интервал времени 5/. Вероятность того, что событие произойдет в этом интервале, уже равна не нулю, а некоей конечной величи­не бЛ а их отношение 5P/5t при устремлении интервала времени к нулю рав­на для данного момента времени некоей величине /?, именуемой плотностью распределения вероятностей. Такое определение совершенно аналогично определению плотности физического тела (в самом деле, масса исчезающе малого объема тела также стремится к нулю, но отношение массы к объему конечно) и потому многие понятия математической статистики имеют назва­ния, заимствованные из соответствующих разделов физики.

Правильно сформулированный вопрос по поводу автобуса звучал бы так: ка­ково распределение плотности вероятностей отправления автобуса во време­ни? Зная эту закономерность, мы можем всегда сказать, какова вероятность того, что автобус отправится в определенный промежуток времени.

Интуитивно форму кривой распределения плотности вероятностей опреде­лить несложно. Существует ли вероятность того, что конкретный автобус отправится, к примеру, позже 10:30 или, наоборот, даже раньше предыдуще­го автобуса? А почему нет — подобные ситуации в реальности представить себе очень легко. Однако ясно, что такая вероятность намного меньше, чем вероятность прихода «около 10:15». Чем дальше в обе стороны мы удаляемся от этого центрального наиболее вероятного срока, тем меньше плотность ве­роятности, пока она не станет практически равной нулю (то, что автобус за­держится на сутки — событие невероятное, скорее всего, если такое случи­лось, вам уже будет не до автобусов). То есть распределение плотностей ве­роятностей должно иметь вид некоей колоколообразной кривой.

В теории вероятностей доказывается, что при некоторых предположениях относительно вероятности конкретных исходов нашего события, эта кривая будет иметь совершенно определенный вид, который называется нормаль­ным распределением вероятностей или распределением Гаусса. Вид кривой плотности нормального распределения и соответствующая формула показа­ны на рис. 13.5.

clip_image002

Рис. 13.5. Плотность нормального распределения вероятностей

Далее мы поясним смысл отдельных параметров в этой формуле, а пока отве­тим на вопрос: действительно ли реальные события, в частности, интере­сующие нас ошибки измерения, всегда имеют нормальное распределение? Строгого ответа на этот вопрос в общем случае нет, и вот по какой причине. Математики имеют дело с абстракциями, считая, что мы уже имеем сколь угодно большой набор отдельных реализаций события (в случае с автобусом это была бы бесконечная таблица пар значений «плотность вероятности — время»). В реальной жизни такой ряд невозможно получить не только пото­му, что для этого потребовалось бы бесконечно долго стоять около остановки и отмечать моменты отправления, но и потому, что стройная картина непре­рывного ряда реализаций одного события (прихода конкретного автобуса) будет в конце концов нарушена совершенно не относящимися к делу веща­ми: маршрут могут отменить, остановку перепестри, автопарк обанкротится, не выдержав конкуренции с маршрутными такси… да мало ли что может произойти такого, что сделает бессмысленным само определение события.

Однако все же интуитивно понятно, что, пока автобус ходит, какое-то, пусть теоретическое, распределение имеется. Такой идеальный бесконеч­ный набор реализаций данного события носит название генеральной сово­купности. Именно генеральная совокупность при некоторых условиях мо­жет иметь, в частности, нормальное распределение. В реальности же мы имеем дело с выборкой из этой генеральной совокупности. Причем одна из важнейших задач, решаемых в математической статистике, состоит в том, чтобы имея на руках две разных выборки, доказать, что они принадлежат одной и той же генеральной совокупности — проще говоря, что перед нами есть реализации одного и того же события. Другая важнейшая для практи­ки задача состоит в том, чтобы по выборке определить вид кривой распре­деления и ее параметры.

На свете сколько угодно случайных событий и процессов, имеющих распре­деление, совершенно отличное от нормального, однако считается (и доказы­вается с помощью т. н. центральной предельной теоремы), что в интересую­щей нас области ошибок измерений при большом числе измерений и истинно случайном их характере, все распределения ошибок — нормальные. Предпо­ложение о большом числе измерений не слишком жесткое — реально доста­точно полутора-двух дес5Гтков измерений, чтобы все теоретические соотно­шения с большой степенью точности соблюдались на практике. А вот про истинную случайность ошибки каждого из измерений можно говорить с из­рядной долей условности: неслучайными их может сделать одно только же­лание экспериментатора побыстрее закончить рабочий день. Но математика тут уже бессильна.

Полученные опытным путем характеристики распределения называются оценками параметров, и, естественно, они будут соответствовать «настоя­щим» значениям с некоторой долей вероятности — наша задача и состоит в том, чтобы определить интервал, в котором могут находиться отклонения оценок от «истинного» значения и соответствующую ему вероятность. Но настало время все же пояснить — что же это за параметры?

в формуле на рис. 13.5 таких параметра два— величины ц и а. Они называ­ется моментами нормального распределения (аналогично моментам распре­деления масс в механике). Параметр ц называется математическим ожидани­ем (или моментом распределения первого порядка), а величина а — средним квадратическим отклонением. Нередко употребляют его квадрат, обозначае­мый как D или просто и носящий название дисперсии (или центрального момента второго порядка).

Математическое ожидание есть абсцисса максимума кривой нормального распределения (в нашем примере с автобусом это время 10:15), а дисперсия, как видно из рис. 13.5, характеризует «размытие» кривой относительно этого максимума— чем больше дисперсия, тем положе кривая. Этим моменты имеют прозрачный физический смысл (вспомните аналогию с фи^зическим распределением плотностей): математическое ожидание есть аналогия цен­тра масс некоего тела, а дисперсия характеризует распределение масс отно­сительно этого центра (хотя распределение плотности материи в физическом теле далеко от нормального распределения плотности вероятности).

Оценкой гпх математического ожидания ц служит хорошо знакомое нам со школы среднее арифметическое:

clip_image004(1)

Здесь п— число измерений; /— текущий номер измерения (/= l,…,w); дс/ — значение измеряемой величины в /-м случае.

Оценка дисперсии вычисляется по формуле:

clip_image006(2)

Оценка среднего квадратического отклонения, соответственно, будет:

clip_image008(3)

Здесь (jc, – гПх) — отклонения конкретных измерений от ранее вычисленного среднего.

Следует особо обратить внимание, что сумму квадратов отклонений делить следует именно на « – 1, а не на «, как может показаться на первый взгляд, иначе оценка получится смещенной. Второе, на что следует обратить внима­ние — разброс относительно среднего характеризует именно среднее квадра-тическое отклонение, вычисленное по формулам (2) и (3), а не среднее арифметическое отклонение, как рекомендуют в некоторых школьных справочни­ках — последнее дает заниженную и смещенную оценку (не напоминает ли вам это аналогию со средним арифметическим и действующим значениями переменного напряжения?).

Заметки на полях

Кроме математического ожидания, средние значения распределения вероят­ностей характеризуют еще величинами, называемыми модой и медианой. В случае нормального распределения все три величины совпадают, но в дру­гих случаях они могут оказаться полезными: мода есть абсцисса наивероят-нейшего значения (то есть максимума на кривой распределения, что полно­стью отвечает бытовому понятию о моде), а медиана выборки есть такая точка, что половина выборки лежит левее ее, а вторая половина — правее.

В принципе этими формулами для расчета случайных погрешностей можно было бы ограничиться, если бы не один важный вопрос: оценки-то мы полу­чили, а вот в какой степени они отвечают действительности? Правильно сформулированный вопрос будет звучать так: какова вероятность того, что среднее арифметическое отклоняется от «истинного» значения (то есть мате­матического ожидания) не более чем на некоторою величину 8 (например, на величину оценки среднего квадратического отклонения s)?

Величина 5 носит название доверительного интервала, а соответствующая вероятность — доверительной вероятностью (или надежностью). Обычно решают задачу, противоположную сформулированной: задаются величиной надежности и вычисляют доверительный интервал 5. В технике принято за­даваться величиной надежности 95%, в очень уж серьезных случаях — 99%. Простейшее правило для обычных измерений в этом случае таково: при уело-вии достаточно большого числа измерений (практически — более 15—20) доверительной вероятности в 95% соответствует доверительный интер­вал в 2Sy а доверительной вероятности в 99% — доверительный интервал в 3s. Это известное правило «трех сигма», согласно которому за пределы утро­енного квадратического отклонения не выйдет ни один результат измерения, но на практике это слишком жесткое требование. Если мы не поленимся про­вести не менее полутора десятков отдельных измерений величины дс, то с чистой совестью можем записать, что результат будет равен

clip_image010

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты