Интерфейс SPI

January 5, 2011 by admin Комментировать »

Синхронный последовательный интерфейс SPI предназначен для ввода- вывода данных в интерфейсах "точка-точка" с одним ведущим (SPI-master) и одним ведомым (SPI-slave) устройством (рис. 1.24). Схема управления SPI- master формирует тактовые импульсы SCK, по которым одновременно производится передача сигналов на выходе MOSI и прием сигналов на входе MISO. Эти же тактовые импульсы SCK, поступая в SPI-slave, управляют приемом сигналов на его входе MOSI и формированием сигналов на его выходе MISO. Раздельные сигнальные цепи MOSI и MISO позволяют легко реализовать полнодуплексный режим обмена данными.

Рис. 1.24.

Форматы данных, параметры сигналов, временные характеристики и т.п. в интерфейсе не регламентируются, например, скорость обмена данными определяется только частотой тактовых импульсов SCK, формируемых SPI- master. Максимальное расстояние зависит от уровня искажения сигналов в линиях связи, предполагается, что надежный обмен данными возможен при расстояниях до нескольких метров.

, по-существу, полноценным интерфейсом даже для физического уровня не является. Фактически, SPI реализует стандартную процедуру ввода-вывода данных в регистрах сдвига, никаких алгоритмов контроля работы, контроля передаваемых данных не предусмотрено. Все необходимые процедуры контроля должен выполнять SPI-master. Это, с одной стороны, требует применения дополнительных средств контроля, а с другой стороны, максимально упрощает средства реализации самого интерфейса SPI. SPI- slave – это стандартный регистр сдвига с требуемым числом разрядов данных.

Например, микроконтроллеры семейства AVR фирмы ATMEL поддерживают ввод-вывод данных в режиме и SPI-master, и SPI-slave. Стандартный цикл обмена предполагает одновременную передачу в обоих направлениях по одному байту данных (рис. 1.24). При передаче многобайтовых сообщений SPI-slave должен содержать регистр сдвига соответствующей разрядности, а SPI-master должен производить управление обменом требуемой последовательности байтов данных, обрабатывая каждый байт после очередного стандартного цикла работы интерфейса и обеспечивая запуск следующего стандартного цикла обмена.

применяется не только для обмена данными между микроконтроллерами, но и для сопряжения микроконтроллеров с внешними АЦП (ADC) и ЦАП (DAC), микросхемами памяти – SRAM, FRAM, SEERAM и многими другими устройствами. Благодаря последовательному формату данных и простой логической организации интерфейса SPI эти микросхемы производятся в компактных 8 – 16 выводных корпусах. В табл. 1.6 приведены примеры микросхем различного функционального назначения и разных производителей с интерфейсом SPI. Эти примеры показывают, что последовательный формат интерфейса позволяет существенно сократить требуемое число линий ввода-вывода.

Таблица 1.6

Тип микросхемы

Основные параметры

Тип корпуса

Производитель

ADC

ADS1241

24-Bit, Delta-Sigma, 15 Гц

SSOP-28

www.ti.com

ADS1252

24-Bit, Delta-Sigma, 41 кГц

SO-8

www.ti.com

ADS8320

16-Bit, SAR, 100 кГц

SO-8

www.ti.com

AD7688

16-Bit, PulSAR, 500 кГц

mS0IC-10

www.analog.com

DAC

TLV5618A

12-Bit, U-out, 2.5 мкс

SOIC-14

www.ti.com

DAC8531

16-Bit, U-out, 10 мкс

mSOP-8

www.ti.com

AD5446

14-Bit, I-out, 0.04 мкс

mSOP-8

www.analog.com

AD7943

12-Bit, I-out, 0.6 мкс

SOP-16

www.analog.com

MAX5443

16-Bit, U-out, 1 мкс

mMAX-8

www.maxim- ic.com

SRAM

DS1200

1024×1 Bit

SO-16

www.dalsemi.com

Тип микросхемы

Основные параметры

Тип корпуса

Производитель

FRAM

FM25C160

16 кБит, 1 трлн

SOP-8

www.ramtron.com

FM25CL04

4 кБит, неогр.

SOP-8

www.ramtron.com

FM25CL25

64 кБит, неогр.

SOP-8

www.ramtron.com

SEEPROM

M95256

256K, 32768×8, 0.1млн Cycles

SO-8, TSSOP-8

www.st.com

AT25080

8К, 1024×8, 0.1млн Cycles

SOIC-8, TSSOP-8

www.atmel.com

AT25640

16K, 8192×8, 0.1млн Cycles

SOIC-8, TSSOP-8

www.atmel.com

AT25128

128K, 16384×8, 0.1млн Cycles

SOIC-8, TSSOP-8

www.atmel.com

AT25256

256K, 32768×8, 0.1млн Cycles

SOIC-8, TSSOP-8

www.atmel.com

Termosensor

ADT7301

13-bit, -40 to +150 Co (±0.5Co)

SOT-23, mSOP

www.analog.com

Одна из проблем, которую часто приходится решать в средствах автоматизации, связана с ограниченным числом линий ввода-вывода микроконтроллеров. Обычно количество передаваемых сигналов существенно превышает возможности параллельных портов, но алгоритмы обработки большинства передаваемых сигналов допускают дополнительные временные задержки, связанные с их передачей в последовательном формате. В этих случаях эффективно применение стандартных последовательно-параллельных регистров.

Например, интерфейс SPI может оказаться полезным для считывания информации о состоянии большого числа двухпозиционных датчиков или для ввода многобитовых данных, поступающих в параллельном формате. Для этих целей удобно использовать отдельные регистры с параллельной записью и последовательным считыванием (8-Bit Parallel-In/Serial-Out Shift Register), например CD74HCT166 (рис. 1.25).

Схема подключения шестнадцати двухпозиционных датчиков (S1 – S16) через SPI-интерфейс микроконтроллера показана на рис. 1.26. Следует отметить, что перед стартом работы SPI-интерфейса необходимо сформировать сигнал записи информации в регистры с параллельных входов D0-D7. Для 38 этого можно использовать один из выходов микроконтроллера, в данном примере PC0.

Рис. 1.25. Функциональная схема регистра CD74HCT166

 

Рис. 1.26. Подключение двухпозиционных датчиков к SPI-интерфейсу

-й-

О

Рис. 1.27. Подключение шестиразрядного индикатора к SPI-интерфейсу

Применяя регистры с последовательной записью и параллельной выдачей информации (8-Bit Serial-In, Parallel-Out Shift Register) – SN74HC595 [www.ti.com], SPI-интерфейс можно использовать и для многобайтовой параллельной выдачи информации. В качестве примера на рис. 1.27 приведена схема подключения шестиразрядного семисегментного индикатора к микроконтроллеру. В отличие от предыдущей схемы, сигнал параллельного вывода (PB1) необходимо сформировать после окончания передачи данных интерфейсом SPI средствами, выходящими за рамки интерфейса. Например, алгоритм взаимодействия с интерфейсом должен предусматривать контроль количества переданных байтов данных, а после завершения передачи последнего байта необходимо дополнительно передать сигнал параллельного вывода.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты