Терморезисторы

January 30, 2011 by admin Комментировать »

Большинство рассмотренных выше температурных датчиков не особенно популярны среди радиолюбителей, занимающихся творчеством в домашних условиях или на работе. Причин этого несколько — это и большая себестоимость, существенные размеры и необходимость применять специальные (достаточно сложные) электронные узлы для обеспечения их работы. Электронные конструкции, которые в изобилии предлагают своим читателям журналы по радиоэлектронике, используют в качестве термодат- чиков, в основном, терморезисторы. О них и пойдет речь ниже.

Терморезистор — это устройство, сопротивление которого значительно изменяется с изменением температуры. Это рези- стивный прибор, обладающий высоким ТКС (температурным коэффициентом сопротивления) в широком диапазоне температур. Различают терморезисторы с отрицательным ТКС, сопротивление которых падает с возрастанием температуры, часто называемые термисторами, и терморезисторы с положительным ТКС, сопротивление которых увеличивается с возрастанием температуры. Такие терморезисторы называются позисторами. обоих типов изготавливают из полупроводниковых материалов, диапазон изменения их ТКС — (-6,5…+70)%/С. Тер- морезисторный эффект заключается в изменении сопротивления полупроводника в большую или меньшую сторону за счет убывз ния или возрастания его темпера!уоы Однако сам м<*чанизм из менения сопро "^вмо’-‘ия с гемперасурой отличен п. подобно! о явления в металлах (о чем и говорит факт уменьшения сопротивления при увеличении температуры], а особенности э»ого физического эффекта будут подробнее рассмотрены ниже.

Известно, что в 1833 году Фарадей обнаружил отрицательный ТКС у сульфида серебра, но отсутствие сведений о явлении в контактах металл-полупроводник препятствовало изготовлению приборов с воспроизводимыми характеристиками. В 30-х годах двадцатого века у оксидов Ге304 и UO? ученые химики обнаружили высокий отрицательный температурный ‘коэффициент со противления. В начале 40-х этот ряд пополнился NiO, СоО, соединениями NiO Со?03-МпуО¦;. Интервал удельных сопротивлений расширился благодаря добавлению о-‘сида меди Мпл04 в соединение Ni0-Mn;-.0;;.

с отрицательным ГКС изготавливаются из оксидов металлов с незаполненными электронными уровнями, и при низких температурах обмен электронами соседних ионов за трудняется, при этом электропроводность вещества мала. Если температура увеличивается, го электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носителей заряда. Другие терморезисторы имеют положитепьный температурный коэффициент сопротивления в некотором интервале температур. Такие терморезисторы на жаргоне радиотехников называют позисторагии.

Терморезсст^рм с положительным ТКС можно разделить на 2 группы:

1.          из полупроводникового материала (обычно Si) в форме небольших пластин о дзумя выводами на противоположных сторонах. Их применение основано на том, что легированные кристаллы St (кремния) как гь тэс и р-типе имеют положительный ТКС при температуре от криогенных до 150°С и выше причем ТКС нрп комнаг-юй температуре примерно равен 0,8% на 1 С,

2.          Терморезисторн с большим ТКС -.до 70% на 1еС), но в более ограниченном диапазоне темпеоятур Материалом в данном случае является поликристаллический полупроводниковый титанат бария с большим изменением ТКС при температуре 120°С, соответствующей сегнетоэлектрической точке Кюри этого материала. Добавляя другие материалы, например, титанат свинца или стронций, такое изменение ТКС можно получить при температурах от -100 до +250°С. Можно также изменить наклон кривой сопротивления так, что большее изменение температур будет происходить в более узком интервале температур, например О…ЮО°С.

Устройство популярных терморезисторов

Температурная зависимость сопротивления является главной характеристикой терморезисторов, в значительной степени определяющей остальные характеристики этих изделий. Она амбивалентна на температурной зависимости удельного сопротивления полупроводника, из которого изготовлен данный терморезистор. Температурная зависимость сопротивления большинства типов отечественных терморезисторов с отрицательным ТКС во всем рабочем интервале температур определяется формулой

Примечание. Промежуточные значения номинальных сопротивлений соответствуют ряду Е6 с допуском ±20% (ММТ-1, КМТ-1); ряду Е12 с допусками ±10, ±20% (СТЗ-1).

Максимальная мощность рассеяния: КМТ-1: 1000 мВт ММТ-1, СТЗ-1: 600 мВт Температурный коэффициент сопротивления: КМТ-1: ~(4,2…8,4)%/°С ММТ-1: -(2,4…5,6)%/°С СТЗ-1: -(3,35…3,95)%/°С Коэффициент температурной чувствительности: КМТ-1: 3600…7200 К ММТ-1: 2060…4300 К СТЗ-1: 2870…3395 К Коэффициент рассеяния: 5 мВт/°С Коэффициент энергетической чувствительности: КМТ-1: 1 мВт ММТ-1, СТЗ-1: 1,3 мВт Постоянная времени: не более 85 с Предельные эксплуатационные данные: Температура окружающей среды: КМТ-1: от -60 до +155°С ММТ-1, СТЗ-1: от -60 до +125°С Относительная влажность воздуха:

КМТ-1, ММТ-1: до 98% при температуре ±25°С СТЗ-1: до 98%> при температуре +35°С Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.) Минимальная наработка:

КМТ-1, ММТ-1: 15 000 часов СТЗ-1: 5 000 часов Срок сохраняемости:

КМТ-1, ММТ-1: 15 лет СТЗ-1: 12 лет

с отрицательным ТКС прямого подогрева бусинковые

ТР-4 — терморезисторы герметизированные изолированные — предназначены для использования в сигнализаторах уровня жидкости, измерения и регулирования температуры, а также для температурной компенсации элементов электрической цепи с положительным ТКС.

Масса: не более 0,3 г

Номинальное сопротивление: 1 -103 0м±20%.

Максимальная мощность рассеяния: 70 мВт

Коэффициент температурной чувствительности:

1600,..1960 К

Температурный коэффициент сопротивления:

-(1,8…2,2)%/°С

Коэффициент температурной чувствительности: 0,15 мВт

Постоянная времени: не более 3 с

Предельные эксплуатационные данные:

Температура окружающей среды: от -60 до +200°С

Относительная влажность воздуха: до 98% при +35°С

Пониженное атмосферное давление:

до 0,00013 Па (Ю-6 мм рт. ст.)

Минимальная наработка: 20 000 часов

Срок сохраняемости: 15 лет.

Ограничение по частоте для применения данных терморезисторов в электронных устройствах составляет 1 кГц. В рабочем состоянии терморезисторы могут нагреваться до температуры 150…200°С. В схемах для ограничения пусковых токов (например, электродвигателей) этот прибор включают последовательно с нагрузкой, и нагревание выполняется за счет проходящего в цепи тока.

Кроме вышеперечисленных приборов популярны терморезисторы ТР-10, ТР-15. Пример полного условного обозначения в документации: терморезистор ТР-15-2200 Ом-1,2 Вт-ТУ11-97 АДПК.434.121.012ТУ. В этой аббревиатуре указаны тип, номинальное сопротивление, мощность рассеивания тепла при 25°С, технические условия завода-разработчика и производителя.

В табл. 1.1 приведены некоторые электрические параметры для терморезисторов ТР-15.

Таблица 1.1. Параметры терморезисторов ТР-15

Диапазон номинальных сопротивлений, 0м

Максимальная мощность, Вт

10…2200

0,5

10…2200

1,2

4,7…1000

0,8

4,7…1000

1,6

2,2…470

2,2

1,5…330

2,5

1,5…330

3,0

1,0…220

4,0

Промежуточные значения номинальных сопротивлений терморезисторов соответствуют ГОСТ 28884-90, то есть могут иметь значения 1,0; 1,5; 2,2; 3,3; 4,7; 6,8 (числовые коэффициенты умножаются на числа 10, 100, 1000). Допустимое отклонение сопротивления ±20%.

При нагреве до максимальной температуры сопротивление терморезисторов уменьшается более чем в 100 раз. Для некоторых приборов (в качестве примера) в табл. 1.2. приведены значения сопротивлений в нагретом состоянии при максимальной мощности рассеивания. Рабочий температурный диапазон для терморезисторов серии TP находится в пределах -60…+155°С. Допустимая мощность рассеяния при температурах выше +25°С пропорционально снижается по линейному закону до 0,25Ртах при максимальной рабочей температуре.

Существуют импортные аналоги, например, терморезисторы фирмы NTC (Negative Temperature Coefficient). Эти приборы выпускаются в различных корпусах, среди которых часть имеет

Таблица 1.2 Изменение со>ч–01ивления терморезистора ТР-15

при максимальном нагреве

Номинальное сопротивление при 25°С. Ом

Максимальная

мощность рассеяния Bi

Электрическое сопротивление при максимальной мощности рассеяния Ом,

не более:

1,0

4

0.030

1,5

3

0,045

10

4

0,17

Ю

3

0.17

100

4

0,9

100

3

0.9

220

4

2.0

220 j 3 680 1,6

2,0

6,3

680

05

6 3

1000

1,6

9.2

1000

0,8

9,2

2200

 

20.3

2200 ; 0.5

20.3

крепления — это позволяв упростить задачу коне гру ктора – разработчика. Диапазон рабочих температур для этих приборов -55 ,, + ) /’О С Внешний вид — в виде большой капли. для ограничения пусковых гокоь фирмы МТС представлено’ в габл 1.3.

Пример ночного обозначения зарубежных аналогов; В57 I53-S330-M здесь В?7 – фирменное обозначение терморе знечора. ! 53 S • типовое обозначение, 330 кодовое обозна чениа сопротивления ‘де поспедняя цифр,? в обозначении указывает количество пулей, го ее гь УЮ со лвэ п. revei 33 Ом.

– I ОЧИОГ УЬ (;1.20%)

Таблица 1.3. NTC для ограничения пусковых токов

Тип

терморезистора

Сопротивление R, при 25°С, 0м

Точность

Максимальная мощность, Вт

Максимальный ток при 0…65°С, А

В57153 (S153)

4,7:10; 15; 33

20

1,4

3; 2; 1,8; 1,3

В57235 (S235)

5; 6; 8; 10

20

1,8

4,2; 4; 3,5; 3

В57236(S236)

2,5…80

20

2,1

5,5…1,6

В57237 (S237)

1…33

20

3,1

9…2,5

В57238 (S238)

1… 25

20

3,0

11,5…3,4

В57364 (S364)

1; 2; 2,5; 4;5; 10

20

5,1

16; 12; 11; 9,5; 8,5; 7,5

В57464(S464)

1,0

20

6.7

20

с положительным ТКС — позисторы

СТ5-1, СТ6-1А, СТ6-1Б — терморезисторы негерметизи- рованные неизолированные — предназначены для измерения и регулирования температуры, противопожарной сигнализации, тепловой защиты, ограничения и стабилизации тока в электрических цепях постоянного тока.

Масса: не более 0,7 г

Диапазон номинальных сопротивлений: СТ5-1: 20…150 Ом СТ6-1 А: 40…400 Ом СТ6-1 Б: 180; 270 Ом

Примечание. Допуск для СТ6-1 Б: ±20%.

Максимальная мощность рассеяния: СТ5-1: 700 мВт СТ6-1 А: 1100 мВт СТ6-1Б: 800 мВт

Температурный коэффициент сопротивления, не менее:

СТ5-1: 20%/°С

СТ6-1 А: 10%/°С

СТ6-1Б: 15%/° С

Примерный температурный интервал положительного ТКС:

СТ5-1: от +120 до +200°С

СТ6-1 А: от +40 до +155°С

СТ6-1Б: от +20 до +125°С

Кратность изменения сопротивления в области положительного ТКС: не менее 103

Коэффициент рассеяния: 9 мВт/°С

Коэффициент энергетической чувствительности:

СТ5-1: 0,01 мВт

СТ6-1 А: 0,3 мВт

СТ6-1Б: 0,5 мВт

Постоянная времени: не более 20 с

Предельные эксплуатационные данные:

Температура окружающей среды:

СТ5-1: от-20 до+200°С

СТ6-1 А: от -60 до +155°С

СТ6-1 Б: от -60 до +125°С

Относительная влажность воздуха при +25°С:

СТ5-1: до 85%

СТ6-1А, СТ6-1Б: до 98%

Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.)

Минимальная наработка:

СТ5-1: 3 000 часов

СТ6-1 А, СТ6-1 Б: 10 000 часов

Срок сохраняемости:

СТ5-1: 3 года

СТ6-1 А, СТ6-1Б: 10 лет

Особенности применения терморезисторов

При монтаже всех типов терморезисторов рекомендуется применять припой марки ПОС-61 (ГОСТ 21930-76). При пайке температура припоя должна быть 260±5°С, а время пайки не более 4 секунд. Пайка выводов терморезисторов должна производиться не ближе 10 мм от его корпуса.

На основе терморезисторов действуют системы дистанционного и централизованного измерения и регулирования температуры, системы теплового контроля машин и механизмов, схемы температурной компенсации, схемы измерения мощности ВЧ. находят применение в промышленной электронике и бытовой аппаратуре: рефрижераторах (холодильных камерах), автомобилях, электронагревательных приборах, телевизорах, системах центрального отопления и пр. В телевизорах часто используются терморезисторы с положительным ТКС для устройства размагничивания кинескопа. Самые первые устройства, где применялись терморезисторы — датчики для измерения и регулирования температуры. массово используются в различных устройствах не только в качестве датчиков температуры. После модификации их можно использовать для изменения времени задержки в широком интервале, в качестве конденсаторов или катушек индуктивности в низкочастотных генераторах, для защиты от выбросов напряжения в емкостных, индуктивных или резистивных схемах, в качестве ограничителей тока, напряжения, для измерения давления газа или теплопроводности. Также они используются в температурных датчиках, термометрах, практически в любой, связанной с температурными режимами, электронике. Применение терморезисторов в военной технике актуально и значимо. являются составной частью электронных систем контроля за температурой ракет стратегического назначения. В противопожарной технике действуют температурные датчики. Датчик содержит два терморезистора с отрицательным температурным коэффициентом, которые установлены на печатной плате в поликарбонатном корпусе. Один выведен наружу — открытый терморезистор, он быстро реагирует на изменение температуры воздуха. Другой терморезистор находится в корпусе и реагирует на изменение температуры медленнее. При стабильных условиях оба терморезистора находятся в термическом равновесии с температурой воздуха и имеют некоторое сопротивление. Если температура воздуха быстро повышается, то сопротивление открытого терморезистора становится меньше, чем сопротивление закрытого. Отношение сопротивлений терморезисторов контролирует электронная схема, и если это отношение превышает пороговый уровень, установленный на заводе, она выдает сигнал тревоги. Такой принцип действия называется «реакцией на скорость повышения температуры». Если температура воздуха повышается медленно, то различие сопротивлений терморезисторов незначительно. Однако эта разница становится выше, если соединить последовательно с закрытым терморезистором резистор с высокой температурной стабильностью. Когда отношение суммы сопротивлений закрытого терморезистора и стабильного резистора и сопротивления открытого терморезистора превышает определенный порог, возникает режим тревоги. Датчик формирует режим «Тревога» при достижении внешней температуры 60°С вне зависимости от скорости нарастания температуры.

Применение терморезисторов в качестве датчиков температуры имеет не только плюсы, но и свои минусы. Так, например, это инерционность, обусловленная постоянной времени т, плохая стабильность в определенных условиях и т.д. Еще одна область применения терморезисторов — температурная компенсация электрических цепей в широком диапазоне температур. Такие электрические схемы популярны среди радиотехников и встречаются в усилителях мощности НЧ и многоплановых универсальных автоматических устройствах, предназначенных для применения в быту.

Оставить комментарий

Устройство витков выходе генератора импульсов микросхемы мощности нагрузки напряжение напряжения питания приемника пример провода работы радоэлектроника сигнал сигнала сигналов сопротивление схема теория транзистора транзисторов управления усиления усилитель усилителя устройства частоты