Обратный ток утечки в р-n-переходе обусловлен, как мы видели, неосновными носителями.
Обычно пары электрон—дырка возникают только за счет тепловой энергии. Но если на р-п-переход падает свет, то это приводит к значительному увеличению плотности неосновных носителей. Электроны и дырки, освобожденные энергией падающих фотонов, вызывают значительное увеличение обратного тока утечки.
Фотодиод — это простой р-п-переход, помещенный в корпус с прозрачным окном. Обычно такой диод работает со смещением в обратном направлении, и типичное значение его тока в темноте равно 1 нА; при освещении с интенсивностью 1 мВт/см2 ток увеличивается до 1 мкА. Такую интенсивность дает лампа мощностью 60 Вт на расстоянии около 30 см (200 люкс).
Фототранзистор — это просто обычный транзистор с прозрачным окном в корпусе. Некоторые фототранзисторы, такие как TIL78, залиты в прозрачный пластик; верх его обычно выпуклый и действует как линза, фокусирующая свет на транзистор, это увеличивает эффективную чувствительность прибора и делает его направленным.
Когда свет падает на транзистор, в обоих р-п-переходах освобождаются неосновные носители, но увеличение фототока дают те из них, которые образуются у смещенного в обратном направлении перехода коллектор- база. Точно так же, как тепловой ток утечки 1СВ0 перехода коллектор—база усиливается транзистором и дает больший ток утечки коллектор—эмиттер 1СЕ0 подобным образом усиливается и фототок, возникающий в переходе коллектор—база. Чувствительность фототранзисторов обычно в сто раз выше, чем у фотодиода. Базовый вывод, как правило, не используется; и в самом деле, дешевые фототранзисторы, такие как TIL78, имеют выводы только коллектора и эмиттера.
Раздел, посвященный оптоэлектронике, будет неполным без упоминания о светодиодах (Light-Emitting Diode, LED). р-n-переходы некоторых составных полупроводников, особенно фосфида галлия и арсенида галлия, излучают свет, когда смещены в прямом направлении. Обычно прямой ток составляет от 5 до 80 мА, и для ограничения этого тока последовательно с диодом включают резистор. Имеются светодиоды с красным, зеленым, желтым и довольно слабым синим свечением, достаточно яркие, чтобы их использовать в качестве световых индикаторов с практически неограниченным сроком службы. В схемах на рис. 1.3—1.5 лампу с напряжением 6 В и током 0,04 А можно заменить светодиодом с последовательно включенным резистором 100 Ом, ограничивающим ток. Помните, что катод свето- диода надо подключать к точке с более низким потенциалом, чтобы получить прямое смещение перехода.
Объединение светодиода и фототранзистора дает полезный прибор, называемый оптопарой (оптроном). Направив светодиод на фототранзистор, мы получаем возможность передавать сигналы из одной цепи в другую с полной электрической изоляцией.
Развитием принципа оптической связи стала передача сигналов по оптоволоконным линиям.
Литература: М.Х.Джонс, Электроника — практический курс Москва: Техносфера, 2006. – 512с. ISBN 5-94836-086-5