Охлаждение транзистора Теплоотводы

January 27, 2012 by admin Комментировать »

В малосигнальных схемах транзисторы редко рассеивают мощность более 100 мВт. Распространение тепла вдоль проводников и конвекция от корпуса транзистора в окружающий воздух оказываются достаточными, чтобы избежать перегрева /?-и-перехода.

Транзисторы, на которых рассеиваются большие мощности, — в эмиттерных повторителях мощных источников питания и в выходных каскадах усилителей мощности — требуют специальных средств для отвода тепла. Обычно теплоотводы (радиаторы) используются с транзисторами, которые приспособлены для работы с радиаторами. На рис. 9.35, а изображен гофрированный металлический радиатор, который удваивает рассеяние тепла транзистором в корпусе Т05, например, транзистором BFY50. Мощный транзистор (рис. 9.35, б) в корпусе ТОЗ монтируется на массивном ребристом радиаторе. Установленный таким образом транзистор допускает рассеяние мощности 30 Вт; без теплоотвода рассеиваемая мощность ограничена 3 Вт.

Рис. 9.35. Радиаторы.

Электрическая изоляция

Корпус радиатора обычно привинчивается непосредственно к заземленному металлическому шасси или к корпусу прибора, или в некоторых случаях шасси само может служить теплоотводом. Во всех этих случаях необходимо помнить, что корпус транзистора обычно соединен с коллектором, и поэтому необходима электрическая изоляция между корпусом транзистора и радиатором. Слюдяные или лавсановые шайбы обеспечивают изоляцию без значительного уменьшения теплопроводности. Силиконовая смазка, нанесенная на каждую сторону шайбы, гарантирует хороший тепловой контакт.

Тепловое сопротивление

Качество теплоотвода обычно выражается величиной теплового сопротивления, которое учитывает тот факт, что скорость распространения тепла пропорциональна разности температур между источником тепла и внешней средой (сравните с электрическим сопротивлением, в котором скорость движения заряда пропорциональна разности потенциалов. [Только с очень большой натяжкой можно уподобить электрический ток скорости движения зарядов. — Примеч. перев.]).

Как это часто бывает с физическими понятиями, единица теплового сопротивления (градусы Цельсия на ватт) подает хорошую идею для его формального определения, которое выглядит так:

Другими словами, корпус теплоотвода, имеющий тепловое сопротивление 3 °С/Вт, при рассеиваемой мощности 30 Вт будет нагреваться до температуры на 3 х 30 °С = 90 °С выше температуры окружающей среды.

Полную картину установившегося теплового равновесия между транзистором и окружающей средой дает тепловая схема, приведенная на рис. 9.36. Тепловая мощность Р, выделяемая транзистором, рассматривается как «генератор теплового тока», который создает разность температур на различных тепловых сопротивлениях в системе.

Максимально допустимая температура р-n-перехода обычно составляет 150 °С, а температуру окружающей среды можно принять равной 50 °С — это температура, при которой допускается работа электронной аппаратуры общего назначения.

Производители транзисторов указывают безопасную максимальную температуру корпуса для своих транзисторов (часто 125 °С), в этом случае в,с

Рис. 9.36. Тепловая схема транзистора и его окружения.

исключается из наших вычислений, и мы спускаемся на одну ступеньку вниз по лестнице из резисторов на рис. 9.36. Кроме того, теплопроводность от корпуса транзистора к радиатору обычно столь хороша, что 6CS 6SA, так что тепловое сопротивление между радиатором и воздухом 6SA является доминирующим фактором в большинстве вычислений. Зная мощность Р, рассеиваемую транзистором, легко найти температуру корпуса Tcasc, предполагая, что температура окружающей среды равна 50 °С:

Сверяясь с данными производителя, теперь можно сказать, может ли этот транзистор рассеивать требуемую мощность при найденной температуре корпуса. Если это не так, то тепловое сопротивление 6SA должно быть уменьшено путем применения большего радиатора.

Большие ребристые радиаторы для мощных транзисторов обычно имеют температурное сопротивление от 2 до 4 °С/Вт, которое можно уменьшить до 1 °С/Вт путем принудительного охлаждения. С другой стороны, у небольших радиаторов, рассчитанных на транзисторы в корпусе Т05, среднее значение теплового сопротивления около 50 °С/Вт, и с их помощью допустимую мощность рассеяния у таких транзисторов средней мощности, как BFY50 или 2N3053, увеличивают с 0,8 до 1,5 Вт.

Литература: М.Х.Джонс, Электроника — практический курс Москва: Техносфера, 2006. – 512с. ISBN 5-94836-086-5

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты