Простые термостабилизаторы на LM555

October 4, 2012 by admin Комментировать »

   Нередко бывает необходимо поддерживать вполне определенную температуру в заданном объеме, например в аквариуме, террариуме и т. п. На рис. 5.43 приведена схема, которая позволяет выполнить эту задачу с довольно высокой точностью (до 0,1 °С при стабилизации питающего напряжения). В качестве датчиков температуры (RK1, RK2) могут использоваться два одинаковых терморезистора с отрицательным коэффициентом изменения сопротивления (NTC любого типа), т. е. уменьшающим свое сопротивление при нагреве (располагаются в зоне нагрева). Так как термодатчики подключены по мостовой схеме, малейшее изменение у них сопротивления приводит к переключению компараторов. Благодаря высокой точности срабатывания компараторов имеется возможмость установить независимо верхний (регулятором R1) и нижний |R4) пороги переключения исполнительного устройства. Управляющее напряжение появляется на выходе микросхемы при повышении температуры выше установленного верхнего уровня, а пропадает при ее снижении ниже нижнего порога.

   Рис. 5.43. Схема для поддержания температуры в заданных пределах

   Второй вариант схемы для поддержания заданной температуры приведен на рис. 5.44 [Л28, стр. 133]. В ней используется только один термодатчик RK1, который располагается в зоне, где необходимо обеспечить термостабилизацию. В устройстве, как и в первом варианте, термодатчик включен по мостовой схеме (входы компараторов находятся в диагонали моста, образованного внешними и находящимися внутри микросхемы резисторами).

   Рис. 5.44. Вариант регулятора температуры, работающий с одним термодатчиком

   С ростом температуры будет увеличиваться напряжение на пороговом входе (2), пока оно не достигнет 0,66Un. Тогда состояние выходного каскада таймера (вывод 3) изменится с высокого на низкий уровень, и это послужит сигналом для включения охлаждающего блока или же просто для отключения имеющегося в термостате подогревателя (зависит от назначения устройства). После этого температура начнет падать, и когда напряжение на входе запускающего компаратора достигнет 0,33Un, выходной каскад вернется в первоначальное состояние, что послужит сигналом для выключения охлаждающегося блока или включения подогревателя.

   Терморезистор RK1 — подойдет любой с отрицательным ТКС (NTC). Но чтобы пределы температуры, на которые установлен термостабилизатор, соблюдались достаточно точно, необходимо рассеивать на термодатчике как можно меньшую электрическую мощность (снизить саморазогрев за счет протекающего через него тока). Этого легко можно добиться, увеличив номинал термодатчика, а также понизив питающее напряжение схемы, что уменьшит и ток в цепи.

   При регулировке схемы сначала с помощью резистора R1 устанавливают верхний, а затем подстройкой R3 — нижний предел регулируемой температуры.

   Если в этой схеме установить стандартный терморезистор, для которого зависимость сопротивления от температуры известна, расчет схемы достаточно прост. Методика расчета всех номиналов резисторов в зависимости от диапазона изменения сопротивления у терморезистора следующая [Л38].

   Используем постоянный коэффициент К, определяемый как К = Rmc/Rmн, где Rmc — сопротивление терморезистора (RK1) в нижней точке интервала температур, a Rmн — сопротивление в верхней точке. Когда Rmc больше Rmн в два или более раз, чтобы в делителе соблюдались правильные соотношения между сопротивлениями, нужно, чтобы:

   Если в системе действуют значительные помехи или же терморезистор подключается к схеме с помощью проводников большой длины, чтобы предотвратить ложные срабатывания от помех и наводок, необходимо зашунтировать входы компаратора емкостями, как показано (С2, СЗ). Это особенно важно, когда установлены большие номиналы сопротивления в делителе.

   Для улучшения отвода тепла от радиаторов в радиоаппаратуре иногда используют принудительное охлаждение при помощи вентилятора. На рис. 5.45 приведена схема управления скоростью вращения вентилятора в зависимости от температуры. При этом электромотор питается импульсами, у которых скважность меняется от0,33 до 1 (33…100%), в зависимости от сопротивления терморезистора, установленного на охлаждаемом объекте. Чем больше температура, тем быстрее будет вращаться вентилятор М1.

   Еще один вариант выполнения схемы для управления скоростью вращения электромотора вентилятора показан на рис. 5.46. Она в пояснениях не нуждается.

   Рис. 5.45. Автоматический регулятор рабочей скорости вентилятора в зависимости от температуры

   Рис. 5.46. Автоматический регулятор скорости вращения вентилятора, используемого в компьютере

    Литература:
Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Оставить комментарий

Устройство витков выходе генератора импульсов микросхемы мощности нагрузки напряжение напряжения питания приемника пример провода работы радоэлектроника сигнал сигнала сигналов сопротивление схема теория транзистора транзисторов управления усиления усилитель усилителя устройства частоты