ИЗМЕРЕНИЕ СВЧ СВОЙСТВ ДИЭЛЕКТРИЧЕСКИХ ПЛЁНОК МЕТОДОМ ВОЛНОВОДНО-ДИЭЛЕКТРИЧЕСКОГО РЕЗОНАНСА

January 3, 2013 by admin Комментировать »

Котельников И. В., Буслов О. Ю., Кейс В. Н., Козырев А. Б Санкт-Петербургский государственный электротехнический университет им. Ленина «ЛЭТИ»

г. Санкт-Петербург, 197376, Россия тел.: (812) 234-48-09, e-mail: mlp@eltech.ru

Аннотация – Предложена методика для измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь сегнетоэлектрических плёнок на диэлектрической подложке с помощью волноводно-диэлектрического резонатора (ВДР). Приведены результаты измерений сегнетоэлектрических плёнок, а также LTCC структур на частоте – 30 ГГц.

I.                                       Введение

На сегодняшний день сегнетоэлектрики широко используются в качестве активного элемента в энергонезависимых элементах памяти. Однако в последнее время в СВЧ диапазоне наибольший интерес проявляется к использованию сегнетоэлектрических (СЭ) плёнок с целью создания особого рода схем, обостряющих фронты импульсов – «обострители импульсов», – для применения их в сверхширокопо- лосных системах связи и пеленгации. Выбор сегнетоэлектриков прежде всего обусловлен высоким быстродействием, ВОЗМОЖНОСТЬЮ работы при повышенных уровнях СВЧ МОЩНОСТИ, низким уровнем потребления энергии управления, низкой стоимости материала. Для создания устройств необходимо знать и уметь измерять СВЧ параметры СЭ плёнок. Ниже предложена методика, позволяющая измерять тангенс угла диэлектрических потерь (tan6), а так же величину диэлектрической проницаемости (ε) сегнетоэлектрических плёнок, нанесённых на подложки.

Рис. 1. Волноводно-диэлектрический резонатор содержащий двухслойный образец.

Fig. 1. Waveguide-dielectric resonator with a doublelayer sample

II.                               Основная часть

Представленная методика для измерения параметров диэлектрических подложек не нова и широко известна [1]. Особенность предложенной методики заключается в использовании математического аппарата, учитывающего влияние плёнки нанесённой на диэлектрическую подложку (двухслойная структура) на резонансную частоту и добротность рассматриваемого резонатора. Схематически резонатор изображен на рис.1. Резонатор представляет собой отрезок запредельного волновода 1, 4 прямоугольного сечения с диэлектрической неоднородностью 2, 3 (образцом), ПОЛНОСТЬЮ перекрывающей сечение запредельного волновода [2]. Возбуждение резонатора производится полями нераспространяющихся в запредельном волноводе ВОЛН. Размеры образца выбираются таким образом, чтобы в месте его расположения могла распространяться волна основного типа ТЕю.

Дпя получения дисперсионного уравнения, на основе которого МОЖНО рассчитать диэлектрическую проницаемость слоёв, необходимо сшить электромагнитные поля на границах воздух-диэлектрик и плёнка- подложка. Для случая симметрично расположенного диэлектрического образца, полученное дисперсионное уравнение выглядит следующим образом:

где CS = cos p^t- sin p^s , sc = sinp^t-cosp^s, cc = cospjt-cosp^s, ss = sinpjt-sinp^s , Pi ~ продольные волновые числа /-ой области, d – половинная длина запредельного участка волновода, f-толщина плёнки, S-толщина подложки. Поперечное волновое число для любой области резонатора определяется однозначно и зависит только от размеров волновода и типа колебаний.

Тангенс угла диэлектрических потерь исследуемой плёнки рассчитывается по формуле:

где \Α/ς- суммарная энергия, запасённая в резонаторе с образцом, Q – собственная добротность резонатора с образцом, Р^- МОЩНОСТЬ, связанная с потерями в металлических стенках резонатора, И/лл, Wnofln – энергии, запасённые в плёнке и подложке, tgSnodn – тангенс угла диэлектрических потерь подложки.

III.                                   Эксперимент

На основе разработанного математического аппарата были проведены аналитические расчеты некоторых вариантов однослойных и двухслойных структур. Эти же варианты были просчитаны с использованием трёхмерной моделирующей программы Ansoft HFSS 8.0. Результаты расчетов приведены в табл. 1.

Результаты расчётов и компьютерного моделирования подтвердили высокую точность аналитической модели.

Для проведения измерений был разработан и изготовлен измерительный макет. Резонатор представлял собой отрезок волновода, разрезанного для помещения внутрь образца, вдоль продольной оси параллельно вектору электрического поля. Сечение запредельного участка измерительной секции для измерений в частотном диапазоне -30 ГГц была выбрана 3.0×3.4 мм^. Длина запредельного участка волновода выбиралась такой, чтобы коэффициент передачи измерительной секции был более -20дБ и составляла 9.0 мм.

Табл. 1. Результаты расчётов ВДР с сечением запредельной области волновода 3.0х3.4мм^ Table 1. Calculated WDR parameters with cut-off cross

section 3.0 X 3.4 mm^

where Ci = cospji-sinpji > ic = sinpji-cosp3i > cc = COSp^t-COSPjS ’ .S.S = sinp^t-sinp,s · p, – longitudinal wave number of / region, d~ half of the length of cut-off waveguide, t – film thickness, s – substrate thickness.

Loss tangent ofthe investigated film is calculate by:

Были исследованы сегнетоэлектрические плёнки толщиной -1мкм, нанесённые на подложки из поликора. Величина диэлектрической проницаемости исследуемой плёнки составила -490, что соответствует результатам низкочастотных измерений контрольных сегнетоэлектрических варакторов, изготовленных на той же подложке в едином технологическом цикпе. Тангенс угла диэлектрических потерь, по результатам расчётов, получился завышенным по сравнению с измерениями альтернативным электродным методом (волноводно-щелевая линия с включенным ва- рактором tan6 = 0.035) и составил -0.05 на частоте ЗОГГц. Это несоответствие может быть связано с наличием воздушных торцевых зазоров, образовавшихся при помещении образца в волновод.

Также были исследованы три вида образцов LTCC, произведённых различными фирмами с толщинами 0.25Н-2.00 мм. Величины диэлектрических проницаемостей подложек лежали в диапазоне 6.3н-8.0, и тангенс угла диэлектрических потерь в диапазоне 0.0025н-0.0045 для различных образцов. Компьютерное моделирование измерительной ячейки показало, что погрешность измерения диэлектрической проницаемости однослойных образцов составляет -3 % и -(10н-15)% для определения тангенса угла диэлектрических потерь.

IV.                                   Заключение

Создана и апробирована методика ВДР для измерения параметров слоистых диэлектриков. Величина погрешности измерений диэлектрической проницаемости плёнок толщиной не менее 1мкм не превышает 10 %, а величины тангенса угла диэлектрических потерь 25 %.

V.                            Список литературы

[^] Диэлектрические резонаторы, под ред. М. Ильченко, Москва, 1989.

[2] Dielectric resonators. D. Kajtez and P. Gnillon, eds., Artech House, 1986.

WAVEGUIDE DIELECTRIC RESONATOR METHOD FOR MEASURE MICROWAVE DIELECTRIC FILMS PROPERTIES

Kotelnikovl. V., Buslov O. Yu., Keis V. N., Kozyrev A. B.

Saint-Petersburg State Electro Technical University Saint Petersburg, 197376, Russia Ph.: (812) 234-48-09, e-mail: mlp@eltech.ru

Abstract – The design principles for microwave ferroelectric (FE) films a properties (loss tangent, permittivity) measurement on the base of Waveguide Dielectric Resonator (WDR) is developed. The results of FE films and LTCC measurements at frequency 30GHz are presented.

I.                                         Introduction

Today the ferroelectric elements are widely used in nonvolatile memory. However recently the interest for FE materials in microwave applications such as «реакег» for wideband communication and direction-finding systems is shown. The choice of FE materials is connected with high fast-acting, high power capability, low control power, cheap manufacturing of elements. To create these devices the microwave properties of the FE films parameters must be measured. The method for measure permittivity and loss tangent of FE films applied to substrate is presented below.

II.                                        Main Part

The feature of presented method is the usage body of mathematics, which allows film influence to resonance frequency, and quality factor of observable resonator. Schematically the resonator is shown on Fig.1. The measured sample consists of substrate 3 and film 2. It put at the middle ofthe cutoff waveguide section as shown on Fig.1. The dispersion equation for design permittivity one-layer properties of the double layer sample is:

where \Νς – total energy stored in resonator with sample, Q – quality factor of resonator with sample, P„ – metal power dissipated in waveguide walls, Wsub – energies stored in film and substrate, tgSsub – loss tangent ofthe substrate.

The mathematical calculation and program simulation (Ansoft HFSS 8.0) results of the different variants one-, two layer samples are presented in Table 1.

The test fixture for microwave (~30GHz) measurements by WDR method was manufactured. The dimension of cross- section is 3.0×3.4 mm^. The length of cut-off waveguide is such to provide transmit power more than -20dB.

The FE films with thickness ~1 micron applied on alumina substrate were investigated. The value of film permittivity -490, and loss tangent -0.05 at frequency 30GHz was measured.

There are three types LTCC with thicknesses 0.25^2.0 mm were measured. The error of permittivity definition one layer sample is -3 % and ~(10^15)% for loss tangent.

III.                                       Conclusion

The WDR technique for measure double-layer dielectrics’ properties was developed and tested. The error of permittivity definition of films with thickness more than 1 micron is less than 10 %, and for loss tangent less than 25 %.

Источник: Материалы Международной Крымской конференции «СВЧ-техника и телекоммуникационные технологии», 2006г. 

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты