Диффузия  примесей в кристаллах

April 23, 2013 by admin Комментировать »

Процессы диффузии очень распространены и играют огромную роль во многих важнейших технологических процессах получения и обработки полупроводников, а также при фазовых и структурных превращениях. Диффузия примесей лежит в основе процесса гомогенизации свойств материала при термообработках, в ряде случаев лимитирует очистку, играет огромную роль при распаде пересыщенных твердых растворов, их упорядочении и разупорядочении. Процессы диффузии используются для получения p n-переходов, для формирования базовых и эмиттерных областей и резисторов в биполярной технологии изготовления полупроводниковых приборов, для создания областей истока и стока в МОП-технологии и т. д. Поэтому знание основных законов диффузии, диффузионных параметров примесей необходимо для выбора оптимальных режимов технологических операций, а также для понимания некоторых эффектов, проявляющихся в процессе изготовления полупроводниковых схем и приборов.

Исторически изучение процессов диффузии велось в направлении создания на основе экспериментальных результатов моделей, которые давали бы возможность предсказывать протекание процесса диффузии путем теоретического анализа. Для технологов конечной целью исследования процесса диффузии являлась возможность расчетным путем определять электрические характеристики полупроводниковых приборов на основе технологических параметров процесса. Диффузионные модели развивались с позиции двух основных приближений: 1) теории сплошных сред с использованием основных уравнений диффузии и 2) атомистической теории, которая принимает во внимание взаимодействие между точечными дефектами и примесными атомами.

При низких значениях концентрации примеси измеренные диффузионные профили хорошо согласуются с решениями уравнения диффузии с постоянными значениями коэффициентов диффузии. В этих случаях конкретные пути перемещения атомов примеси, как правило, не известны. При высоких значениях концентрации примеси форма диффузионных профилей отклоняется от формы, предсказанной простой диффузионной теорией. Это отклонение обусловлено влиянием на процесс диффузии примесей факторов, не принятых во внимание в диффузионных уравнениях, и в первую очередь, концентрационной зависимостью коэффициентов диффузии, входящих в уравнение диффузии. Для объяснения экспериментальных результатов концентрационной зависимости коэффициентов диффузии и для анализа других аномальных результатов процесса диффузии были предложены различные атомные модели, основанные на взаимодействии дефектов с примесными атомами. Атомистическая теория диффузии находится сейчас еще в процессе активного развития, поэтому мы начнем с обсуждения диффузионных процессов в рамках первого приближения.

Под диффузией понимают  процесс  установления  внутри  кристалла равновесного распределения концентраций, обусловленный тепловым движением атомов и реализуемый обычно их перемещением. Элементарный акт диффузии состоит в скачке атома на расстояние порядка межатомного, то есть переходе из одного равновесного положения в решетке в другое.

Диффузию атомов основного вещества называют самодиффузией, а  атомов примеси — гетеродиффузией. Движущей силой диффузии является градиент химического потенциала µ, наличие которого может быть вызвано различными причинами. Согласно термодинамике необратимых процессов для диффузии в одном направлении (простейший случай) количество  вещества,  продиффундировавшего в  единицу  времени через единицу площади, перпендикулярной направлению диффузии, то есть плотность диффузионного потока атомов M, пропорционально этому градиенту химического потенциала

∂µ

= −P ,                                           (8.1)

M

где P — коэффициент пропорциональности, определяющий скорость выравнивания химического потенциала. Знак минус в уравнении означает, что поток направлен в сторону, противоположную градиенту.

Наиболее распространена диффузия для случая, когда градиент химического потенциала вызван градиентом концентрации dC/dx какого-либо компонента в многокомпонентной системе. В случае dC/dx ƒ= 0 тепловое движение перестает быть хаотическим, оно становится направленным в сторону выравнивания концентрации. Уравнение (8.1) в этом случае примет вид

M

= −D

C(x, t)                                       (8.2)

x

где C — концентрация диффундирующего вещества, которая в нашем случае зависит только от x и t; x — ось координат, совпадающая с направлением потока диффундирующего вещества; t — время диффузии; D коэффициент диффузии, который определяет скорость выравнивания концентрации диффундирующего вещества. Коэффициент диффузии

имеет размерность L2t−1  и обычно выражается в см2c−1. Формула (8.2)

представляет собой первый закон диффузии (первый закон Фика).

Для практических расчетов часто удобнее иметь формулу, выражающую концентрацию диффундирующего вещества в разных точках образца в разные моменты времени (в зависимости от времени диффузионного отжига).

Если взять две параллельные единичные площадки с координатами x и x + ∆x, то внутрь объема, ограниченного указанными площадками, за время dt войдет диффундирующее вещество в количестве M1, а выйдет из этого объема в количестве M2.

Направленный поток атомов может возникнуть не только из-за наличия градиента концентрации, но он может возникнуть и в его отсутствии под воздействием направленных внешних сил. Такая диффузия называется вынужденной. Она может приводить не только к выравниванию, но и к увеличению градиента концентраций. Основными видами вынужденной диффузии являются следующие.

Термодиффузия — диффузия в условиях наличия градиента температур dT /dx. Характерный пример — диффузия носителей тока от горячего спая к холодному в термоэлектрических преобразователях энергии.

Электродиффузия — диффузия в условиях наличия градиента электрического потенциала dϕ/dx. Характерные примеры  электродиффузии — электролитические процессы.

Восходящая диффузия —  диффузия в  условиях  наличия градиента упругих  напряжений  dU /dx. Схематически это можно  представить себе следующим образом. Пусть некоторый объем кристалла содержит атомы двух элементов A и B, имеющих существенно различные размеры: RA  > RB . В равновесном состоянии распределение атомов A и B в разных макрообъемах будет однородным. Если теперь изогнуть кристалл и в изогнутом состоянии нагреть до такой температуры, при которой станет возможной интенсивная диффузия атомов, то под влиянием стремления системы к уменьшению упругих напряжений атомы A будут диффундировать в растянутую область кристалла, а атомы B — в сжатую. В результате возникнет градиент концентраций. Характерным примером такой диффузии является образование «примесных атмосфер» вокруг дислокаций.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты