Примеси в элементарных полупроводниках

April 25, 2013 by admin Комментировать »

Поведение примесей в элементарных полупроводниках рассмотрим на примере их поведения в германии и кремнии. Напомним, что главным образом это поведение определяется положением примесей в периодиче

Таблица 3.2. Термическая энергия ионизации примесей элементов VA, IIIA подгрупп и Li в Si и Ge [32].

Кремний

Германий

Доноры

Акцепторы

Доноры

Акцепторы

Атом

Ei , эВ

Атом

Ei, эВ

Атом

Ei , эВ

Атом

Ei , эВ

Li

0.033

B

0.045

P

0.0120

B

0.0104

P

0.044

Al

0.057

As

0.0127

Al

0.0102

As

0.049

Ga

0.065

Sb

0.0096

Ga

0.0108

Sb

0.039

In

0.16

In

0.0112

Bi

0.069

Tl

0.26

Tl

0.01

ской системе элементов.

Электрически активные  примеси

Элементы IIIA и VA подгрупп встраиваются в решетку германия и кремния, преимущественно замещая атомы основного вещества, и при этом ведут себя в соответствии с своей валентностью. Атом элемента VA подгруппы отдает четыре валентных электрона на образование химической связи, а один его электрон может быть переведен в зону проводимости. Атом элемента IIIA подгруппы отдает три валентных электрона на образование химической связи и может присоединить один электрон, что приведет к образованию дырки в валентной зоне. Таким образом, элементы VA подгруппы ведут себя как простые доноры, а элементы IIIA подгруппы как простые акцепторы, образуя мелкие энергетические уровни в запрещенной зоне. Термически определенные значения энергии ионизации примесей элементов VA и IIIA подгрупп, а также лития в слаболегированных Si и Ge приведены в табл. 3.2.

Из таблицы следует, что энергии ионизации примесей IIIA и VA подгрупп в германии отличаются друг от друга существенно меньше, чем в кремнии. В германии энергии ионизации примесей как из одной, так и из разных подгрупп мало отличаются друг от друга и близки к значению

0.01 эВ, предсказываемому водородоподобной моделью для примесных

атомов [6] и [32]. Небольшое различие в энергиях ионизации разных примесей в этом случае показывает, что для примесей IIIA и VA подгрупп в германии водородоподобная модель дает неплохое приближение. В кремнии же ситуация иная: наблюдается большая разница в энергиях ионизации примесей даже из одной и той же подгруппы, чем в германии для примесей из разных подгрупп (см. табл. 3.2). Таким образом, в кремнии более сильно проявляются отклонения в значениях энергии ионизации примесей из IIIA и  VA подгрупп от значений, предсказываемых водородоподобной моделью, для этих примесей. Особенно это заметно в случае In и Tl, которые являются, по существу, глубокими акцепторными примесями. Это единственные стабильные одноуровневые примеси из известных глубоких примесей. Тем не менее, и в этом случае (за исключением In и Tl) энергии ионизации примесей небольшие, поэтому при температурах, близких к комнатной и выше, атомы этих примесей ионизованы почти полностью. Наличие отклонений в значениях энергии ионизации примесей из IIIA и VA подгрупп в Si и Ge от значений, предсказываемых водородоподобной моделью, обусловлено тем, что на межатомных расстояниях потенциал, создаваемый примесным ионом, существенно отличается от потенциала точечного заряда и зависит от химической природы примеси. Эта короткодействующая часть примесного потенциала создает дополнительное по отношению к величине энергии ионизации, предсказываемой водородоподобной моделью, смещение примесного уровня, называемое химическим сдвигом. Благодаря химическому сдвигу примесные уровни разных примесей отличаются друг от друга.

Как уже было сказано выше, элементы IIIA и VA подгрупп встраиваются в германии и кремнии преимущественно в узлы кристаллической решетки, однако некоторые из них могут также занимать и междоузельное положение. Очевидно, что расположенные в междоузлиях примесные атомы, ведут себя иначе, чем примесные атомы в узлах решетки. В этом случае концентрация основных носителей может отличаться от концентрации примеси в температурном интервале, соответствующем полной ионизации примеси. Например, примесь фосфора в кремнии преимущественно встраивается в узлы решетки, но часть атомов размещается в междоузлиях. Атомы фосфора в междоузлиях, по-видимому, электрически неактивны, поэтому концентрация электронов в Si, легированном P, в температурном интервале, соответствующем полной ионизации примеси, немного ниже, чем полная концентрация вводимого в кремний фосфора.

Практическая значимость примесей, дающих мелкие уровни энергии в запрещенной зоне полупроводника, заключается в том, что они имеют невысокие энергии ионизации (например, в германии при температурах ∼10 K атомы этих элементов практически полностью ионизованы)

и хорошо растворяются в легируемом материале (имеют высокие коэффициенты растворимости, см. гл. 7, и малые коэффициенты диффузии, см. гл. 8), поэтому, вводя их в полупроводники, можно в широких пре

Рис. 3.16. Энергетические уровни примесей в Si. Символы + и − обозначают

донорные и акцепторные уровни соответственно [32].

делах менять концентрацию электронов и дырок в них (от собственной до 1021 см−3) и их проводимость. Подобные примеси называются легирующими.

Поведение примесей в кремнии и германии усложняется по мере «удаления» их в периодической системе от элементов IVA подгруппы. Большинство примесей из I, II, VI групп и переходные металлы в слаболегированных кремнии и германии являются примесями замещения, хотя некоторые из них могут размещаться в решетке основного вещества и (или) в междоузлиях. Например, примесь меди в германии. Атомы Cu входят как в узлы, так и в междоузлия в решетке Ge. Магний, кальций, стронций и барий в кремнии и германии также могут размещаться как в узлах, так и в междоузлиях кристаллической решетки [17].

Примеси I, II, VI групп и переходные металлы образуют несколько альтернативных глубоких локальных уровней энергии в запрещенной зоне кремния и германия. Глубокие состояния, как правило, возникают, когда основной вклад в энергию связи дает не электрическое притяжение, ослабленное диэлектрической проницаемостью (водородоподобное приближение), а короткодействующий потенциал, который определяется химической природой примеси. Мелкие донорные состояния можно считать отщепившимися от зоны проводимости, а мелкие акцепторные состояния — от валентной зоны. Глубокие состояния принадлежат в равной мере обеим зонам и могут быть и донорными, и акцепторными. Положение экспериментально определенных энергетических уровней некоторых примесей из этих групп в запрещенной зоне кремния и германия приведены на рис. 3.16 и рис. 3.17, соответственно.

Можно считать, что поведение примесей замещения, образующих глубокие уровни в Si и Ge, соответствует их валентности, если предположить, что в случае элементов I, II групп и переходных металлов (на

Рис. 3.17. Энергетические уровни примесей в Ge. Символы + и − обозначают

донорные и акцепторные уровни соответственно [32].

самой внешней оболочке атомов из этой группы находится по два электрона ns2) все валентные электроны поступают на образование связей тетраэдрического типа, а в случае элементов VI группы в образовании этих связей участвуют четыре валентных электрона и в зону проводимости могут быть переведены два валентных электрона. В решетке полупроводника в ионизованном состоянии эти примеси присутствуют в виде многозарядных ионов. Максимальное число локальных энергетических уровней, создаваемых примесью замещения в элементарном полупроводнике, как правило, равно разности между числом валентных электронов атома кремния (германия) и атома примеси. Например, Zn (IIB группа) в Ge (см. рис. 3.17). Валентность атомов Zn равна двум, для образования тетраэдрических связей в Ge этой примеси недостает еще двух электронов, что приводит к их захвату из валентной зоны и образованию двух дырок в ней, и поэтому атомы цинка в германии являются двухзарядными акцепторами. Аналогичные рассуждения показывают, что железо (VIII группа, валентность равна двум) в германии является двухзарядным акцептором, а медь (I группа, валентность равна 1) в Si является трехзарядным акцептором. Однако установлено, что Li (I группа) в решетке кремния и германия размещается в междоузлиях, что связано с его малым размером, и образует в запрещенной зоне один мелкий донорный уровень. Теллур Te (VI группа) имеет шесть валентных электронов, только четыре из которых принимают участие в образовании тетраэдрических связей в Ge, поэтому атомы теллура в германии образуют два донорных уровня. Эти рассуждения в основном подтверждены экспериментальными данными, приведенными на рис. 3.16 и рис. 3.17. Из этих рисунков и табл. 3.2 следует, что глубина залегания примесей II и III групп, как правило, увеличивается с ростом атомного номера. Аналогич

ная тенденция наблюдается и для Cu, Ag и Au (IB подгруппа).

Следует отметить, что поведение переходных металлов из VII, VIII групп и с незаполненной 5d-оболочкой в Si и Ge изучено менее подробно, чем примесей остальных групп (см. рис. 3.16 и рис. 3.17). Чаще всего они образуют несколько глубоких уровней в запрещенной зоне. Как уже отмечалось выше, если эти примеси размещаются в узлах кристаллической решетки Si или Ge, то их поведение, как правило, соответствует их валентности — они являются двухзарядными акцепторами. Однако так бывает не всегда. Например, примесные атомы Fe и Mn в Ge размещаются узлах и образуют в соответствии со своей валентностью по два акцепторных уровня; однако в Si, занимая стабильные положения в узлах при наличии в решетке вакансий, эти примеси образуют донорные уровни [32] (см. рис. 3.16 и рис. 3.17). Кроме того, примеси указанных переходных металлов могут размещаться как в узлах, так и в междоузлиях решетки полупроводника. Например, установлено, что никель в кремнии размещается как в узлах, так и в междоузлиях, причем основная часть Ni попадает в междоузельное положение. В узловом положении Ni проявляет электрическую активность и является двухзарядным акцептором, в то время как электрическая активность междоузельного никеля не обнаружена [31] и [32]. Последнее связано, по-видимому, с образованием преципитатов при охлаждении материала [32]. Еще одной особенностью переходных металлов является то, что они могут быть амфотерными примесями в Si и Ge.

Амфотерными примесями в кремнии и германии, как уже обсуждалось выше, могут быть атомы с незаполненной d-оболочкой, способные быть донорами или акцепторами в одной из кристаллических позиций, или те, которые могут размещаться как в узлах, так и междоузлиях кристаллической решетки и проявлять при этом донорные и акцепторные свойства в зависимости от своего расположения. К настоящему времени экспериментально установлены следующие данные [31].

Примесные атомы переходных металлов, находящиеся в полупроводнике в неионизованном состоянии, благодаря своей электрической активности способны под внешним воздействием отдавать электроны с d-оболочки в зону проводимости или захватывать на d-орбитали валентные электроны кристалла, образуя в валентной зоне дырку. Отдача или захват электронов идут с изменением электронной конфигурации d-оболочек, то есть с изменением их заполнения электронами. Исходная конфигурация d-атома определяется его кристаллохимическим состоянием. Она зависит от типа кристалла и той позиции в кристаллической решетке, которую занимает примесный атом. Правила, по которым происходит изменение электронной конфигурации d-атома при его размещении в кристалле полупроводника, определяются моделью, первоначально установленной на основе экспериментальных данных Людвигом и Вудбери [33], а затем теоретически обоснованной Ройциным и Фирштейном [34], и поэтому сокращенно называемой РФЛВ моделью. Согласно этой моде

ли, развитой применительно к кремнию, принимается, что при замещении узлового атома в кристаллической решетке электроны 4s-оболочки и часть недостающих (до 4) электронов 3d-оболочки примесного d-атома идут на образование ковалентной связи с четырьмя ближайшими атомами кремния; в случае размещения примесного d-атома в междоузлии электроны из его 4s-оболочки отталкиваются электронами окружающих атомов кремния и переходят на d-оболочку, то есть в четырехвалентных кристаллах кремния и германия имеет место следующая перестройка электронной структуры d-атома: 3dn4sm (свободный атом) → 3dn−(4−m) — узел; 3dn4sm  (свободный атом) → 3dn+m  — междоузлие.

Большое число экспериментальных данных подтвердило применимость этой модели и для бинарных полупроводников AIII BV  и AII BVI . Поэтому в общем виде результат модели можно представить в виде схемы: 3dn4sm  (свободный атом) → 3dn−(m)  — узел;

3dn4sm  (свободный  атом) →  3dn+m  — междоузлие, где V  — валентность замещаемого

атома кристалла.

В основе модели РФЛВ лежат представления теории кристаллического поля (ТКП), предполагающей эквивалентность спектроскопических единиц, описывающих электронные термы, и координационных полиэдров, составляющих структуру кристалла. Полиэдр состоит из отрицательно заряженных ионов-лигандов (например, атомов кремния), находящихся в его вершинах, и расположенного в центе полиэдра положительно заряженного иона d-металла. В ТКП пренебрегается электронной структурой лигандов, то есть лиганды отождествляются с точечными электрическими зарядами, и их роль сводится только к созданию электрического кристаллического поля. Симметрия кристаллического поля определяется симметрией координационных полиэдров, составляющих структуру рассматриваемого кристалла. Для полупроводников AIV , AIII BV и AII BVI следует рассматривать только

два типа симметрии: тетраэдрическую и для учета второй координационной сферы — октаэдрическую. Механизм преобразования электронных термов d-иона в кристаллическом поле рассмотрен в [30]. Подобная модель позволяет получить общую картину поведения всех уровней d-иона в кристаллическом поле: качественный характер расщепления уровней, их взаимное расположение и относительные энергетические зазоры между ними.

Однако модель кристаллического поля не дает ответа на вопросы: какова «привязка» системы расщепленных уровней к краям разрешенных зон и какой характер, донорный или акцепторный, имеют энергетические основные состояния образуемых уровней. Для ответа на эти вопросы необходимо рассмотрение примесного потенциала d-атома с учетом его резонансного характера и с учетом межэлектронных взаимодействий [31]. Результат этого рассмотрения позволяет определить правильное положение d-уровней в энергетическом спектре полупроводника и выяснить, у каких d-примесей следует ожидать проявления амфотерности. Было установлено, что такими примесями могут быть только те, у которых оба уровня, соответствующие переходам из исходного (неионизованного относительно решетки) состояния примесного атома dn в ионизованное состояние с передачей электрона в зону проводимости (донорный переход) и в ионизованное состояние с захваченным электроном (акцепторный переход) оказываются в запрещенной зоне полупроводника. Для того, чтобы в запрещенной зоне могли «разместиться» оба таких уровня, требуется достаточно широкая запрещенная зона и большая степень перемешивания p-орбиталей электронов валентной зоны и d-орбиталей электронов примеси. Расчетные данные показали, что Co, Cu и Ni, находясь в узлах решетки Si, дают уровни в запрещенной зоне, а уровни Fe, Mn, Cr, V и Ti соответствуют их междоузельному расположению в Si. Из этих же данных следует, что амфотерность узельного типа следует ожидать только для примеси Co в Si, а в соединениях AIII BV амфотерностью обладают лишь примесь хрома в GaAs и примесь ванадия в GaP.

Из экспериментов по диффузионному насыщению образцов кремния примесью кобальта (см. гл. 8) было установлено, что концентрации уровней амфотерного кобальта в nи p-типе образцов близки, и отсюда следует вывод о том, что они принадлежат одному и тому же примесному состоянию кобальта. Кроме того, известно, что примесь кобальта в кремнии размещается как в узлах, так и в междоузлиях кристаллической решетки. Экспериментальные данные по растворимости электрически активного Co и его полной растворимости (см. гл. 7) указывают (разница на два порядка), что амфотерную составляющую кобальта, по-видимому, следует приписать узельному состоянию Co, имеющему в неионизованном относительно решетки состоянии электронную конфигурацию d5. При захвате электрона в n-Si амфотерный центр Co перейдет в состояние d6, а в p-Si при захвате дырки — в d4. Именно серединное заполнение d-оболочки неионизованного центра Co (d5) и определяет его «неустойчивое» состояние, способное практически равновероятно принимать или отдавать электрон. Таким образом, атомы кобальта в кремнии оказываются амфотерными примесями узельного типа, хотя их растворимость в этом полупроводнике и невелика.

Примеси титана, ванадия, марганца в Si являются междоузельными амфотерными примесями. Относительно скандия и ртути вопрос до сих пор остается открытым.

Перейдем к обсуждению диссоциативных амфотерных примесей в Si и Ge.  В качестве примера подробно рассмотрим наиболее изученную примесь этого типа: медь в германии. Большим числом исследований установлено, что атомы меди в германии растворяются в узлах и междоузлиях в сравнимых количествах, причем концентрация меди в обеих кристаллохимических позициях зависит от температуры. С этой особенностью связан сложный характер диффузии меди в этом материале (см. подробнее гл. 8). Зарядовое состояние примеси Cu в Ge можно прогнозировать, исходя из общей модели РФЛВ поведения d-примесей в полупроводниках (см. выше). Из нее следует, что размещаясь в узлах кристаллической решетки Ge, примесные атомы меди должны быть трехзарядными акцепторами; атомы меди в междоузлиях могут находиться только в состояниях  Cu0 и Cu+. Эта ситуация действительно реализуется на опыте. Экспериментально подтверждено, что атомы меди в узловом положении образуют три акцепторных уровня (см. рис. 3.17). Присутствие меди в междоузлиях кристаллической решетки германия доказывается многочисленными опытами по ее диффузии (см. гл. 8) и по кинетике распада твердого раствора Ge(Cu), однако никаких энергетических уровней в запрещенной зоне германия, связанных с Cui, не обнаружено. В то же время опыты по определению зарядового состоя нения реализуется только для тех атомов, которые имеют промежуточную валентность по сравнению с валентностями компонентов соединения. Наиболее наглядно это проявляется для элементов четвертой группы периодической системы в полупроводниках AIII BV . В  этом случае атом CIV , размещаясь в катионном узле AIII , проявляет донорные свойства, а занимая анионный узел BV — акцепторные. При этом проявляется известное правило валентности ∆V = ±1, справедливое для водородоподобных примесей замещения. Однако и здесь при прогнозе, будет ли та или иная примесь амфотерной в полупроводниковом соединении, возникают определенные трудности, так как упомянутое выше сходство оказалось лишь внешним, поскольку тщательное исследование показало, что амфотерные примеси четвертого типа не являются, строго говоря, водородоподобными.

Вопросы о том, какие именно примеси будут проявлять электрическую активность в том или ином полупроводнике и какие из них окажутся амфотерными, требуют специального анализа. К сожалению, ответы на эти вопросы нельзя получить исходя из простых представлений о свойствах примесного атома, основанных на близости геометрических (атомных или ионных радиусов) и электрохимических (электроотрицательностей) характеристик примесного атома и той кристаллохимической позиции, которую он занимает в полупроводнике. Ни тот, ни другой критерий не могут быть использованы для атомов переходных металлов (случай амфотерных узельных и амфотерных междоузельных центров) из-за неприменимости представления о радиусах и электроотрицательностях, как о постоянных атомных характеристиках [30]. Эти критерии оказываются неприменимы и для амфотерных диссоциативных примесей по тем же причинам, что и в предыдущем случае. Прогнозирование проявления амфотерных примесных центров всех типов в полупроводниках возможно только на основе строгой теории о узельной и междоузельной растворимости примесей в полупроводниках. Современному состоянию этой проблемы, различным подходам к ее решению посвящена монография [31].

К электрически неактивным примесям в полупроводниках относятся изоэлектронные примеси. Довольно часто электрически неактивными примесями в полупроводниках бывают такие примеси, как водород, кислород, азот, а также примеси некоторых элементов, размещающиеся в междоузлиях кристаллической решетки полупроводника. Примеси подобного рода не изменяют концентрацию носителей заряда, однако могут влиять на времена жизни свободных носителей заряда и вносить вклад в излучательную рекомбинацию.

Изоэлектронные примеси — это примесные атомы из той же подгруппы таблицы Менделеева, что и атомы основного элементарного полупроводника или компонента соединения, имеющие с ними одинаковое число валентных электронов и размещающиеся в узлах решетки основного вещества (например, олово в германии и кремнии; висмут в фосфиде галлия).

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты