Дислокации влияют не только на механические свойства кристаллов (пластичность, прочность),9 для которых наличие дислокаций является определяющим, но и на другие физические свойства кристаллов, например, на электрические.
Дислокации подобно примесным атомам и собственным точечным дефектам могут создавать дополнительные электронные состояния в запрещенной зоне. Например, при наличии краевой дислокации атомы, образующие край атомной полуплоскости (линию дислокации), имеют ненасыщенные связи. Неспаренные электроны атомов с оборванными связями приводят к появлению дополнительных состояний. При этом возможны два случая:
а) захват дополнительного электрона на ненасыщенную связь с возможным образованием разрешенного состояния электрона в запрещенной зоне (дислокация проявляет акцепторые свойства);
б) разрыв ненасыщенной связи и превращение неспаренного электрона в электрон проводимости (дислокация проявляет донорные свойства).
Таким образом, краевые дислокации по электрическим свойствам оказываются сходными с примесными центрами. Однако между ними имеются и существенные различия. Дислокации образованы непрерывной цепочкой атомов основного вещества (среднее расстояние между ними очень мало вдоль дислокации), и поэтому их нельзя считать изолированными дефектами как в случае примесных атомов. Отдельные дислокации можно представить как одномерные кристаллы, которые в запрещенной зоне могут создавать энергетические дислокационные зоны. Следует заметить, что при наличие примесных атмосфер Коттрелла вблизи дислокации могут возникать и дискретные локальные уровни.
Краевую дислокацию в определенном смысле можно рассматривать как заряженную линию. Если, например, проявляются акцепторные свойства дислокации, то в материале n-типа она будет заряжена отрицатель
9Наличие дислокаций делает кристалл более пластичным. Для упрочения сплавов необходимо уменьшить скорость движения дислокаций путем их торможения, закрепления и т. д. [16].
но и окружена цилиндрическим слоем индуцированного положительного заряда. Локальные области пространственного заряда, образующиеся вокруг дислокаций, могут приводить к рассеянию носителей заряда, тем самым снижая их подвижности, причем подвижность вдоль и перпендикулярно дислокации оказывается существенно различной.
Электрическая активность дислокаций, как правило, отрицательно сказывается на свойствах полупроводниковых приборов, например, вызывает преждевременный пробой в областях прибора, где дислокация
пересекает p − n-переход. Дислокации оказывают существенное влияние
и на время жизни свободных носителей. В чистых кристаллах нередко именно они ограничивают времена жизни неравновесных носителей заряда.
Кроме того, дислокации определяют концентрацию точечных дефектов в полупроводниковых монокристаллах, так как являются их «источником» и «стоком». Области увеличенных межатомных расстояний являются потенциальными «стоками» междоузельных атомов и «источниками» вакансий в кристалле, а области сжатых межатомных расстояний — наоборот (см. п. 3). Точечные дефекты появляются также и при пересечении отдельно движущихся дислокаций, и при аннигиляции дислокаций, движущихся в параллельных плоскостях скольжения.
Дислокации увеличивают скорость диффузия атомов в кристалле (см. гл. 8), ускоряют эффекты «старения» материала и другие процессы, протекающие с участием диффузии. Сгущение облаков Коттрелла вокруг дислокаций может привести к образованию включений второй фазы. В некоторых случаях дислокации могут играть определяющую роль в процессах роста кристаллов (см. гл. 4).
Методы наблюдения дислокаций
Существует достаточно много экспериментальных методов наблюдения дислокаций. Например, за дислокациями можно наблюдать с помощью электронного микроскопа с высокой разрешающей способностью, с помощью рентгеновской топографии. Однако особенно широкое распространение при изучении дислокаций получили методы избирательного травления и декорирования. Метод избирательного травления основан на том, что вблизи дислокаций энергия связи атомов гораздо слабее, чем в недеформированной решетке. Поэтому места выхода дислокаций на поверхность кристалла травятся специально подобранным травителем быстрее, чем окружающая дислокацию поверхность. В результате такого травления на поверхности кристалла возникают ямки травления. Подсчет
их позволяет определять одну из важнейших для полупроводниковых к ристаллов характеристик — плотность дислокаций, выражаемую числом ямок травления на квадратный сантиметр. Расположение на поверхности кристалла и форма ямок травления дают возможность исследовать свойства дислокаций. По фигурам травления можно проследить за образованием и движением дислокаций в процессе пластической деформации. Недостатком метода травления является то, что с его помощью определяются не все дислокации, а лишь те, которые выходят на поверхность образца или образуют петли на незначительной глубине от поверхности. Кроме того, ямки травления могут возникать не только в местах выхода дислокаций на поверхность кристалла, но и в местах скоплений точечных дефектов и включений второй фазы. Поэтому важна правильность идентификации ямок травления.
Метод декорирования основан на том, что дислокации могут служить местами стока примесных атомов, что позволяет их выявлять. Для этого диффузией вводят в кристалл примеси, которые осаждаясь на линиях дислокаций, декорируют их. Это делает возможным их наблюдение с применением, например, инфракрасной микроскопии. В отличие от метода травления метод декорирования позволяет наблюдать дислокационную структуру не только на поверхности, но и в глубине кристалла. Существенным недостатком этого метода является необходимость нагревания и выдержки образцов при повышенных температурах, что влияет на количество и распределение дислокаций. Кроме того, к недостаткам этого метода следует отнести невозможность наблюдения за изменением дислокационной структуры.
В полупроводниковых монокристаллах, выращенных в обычных условиях, плотность дислокаций колеблется в пределах ND = 104–106 см−2. Путем отжига можно понизить эту плотность до 103–104 см−2. Методы
выращивания монокристаллов, практически не содержащих дислокаций, сложны и разработаны только для немногих материалов, в частности для германия и кремния и некоторых соединений AIIIBV (см. гл. 7).
Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002
- Предыдущая запись: Водородная связь – основы материаловедения
- Следующая запись: Примеси в элементарных полупроводниках
- ПРОСТОЙ ЭЛЕКТРОННЫЙ ЗАМОК (0)
- Микросхемы низковольтных импульсных преобразователей (0)
- Почему в ИИП применяют полевые транзисторы (0)
- Микрофонный усилитель-компрессор для УКВ ЧМ-передатчика (0)
- Снова об ИК барьере (0)
- Восстановление забытого пароля и вход в систему (0)
- Регулировка громкости в высококачественной радиоаппаратуре (0)