Влияние дислокаций на некоторые физические свойства кристалла

April 25, 2013 by admin Комментировать »

Дислокации влияют не только на механические свойства кристаллов (пластичность, прочность),9 для которых наличие дислокаций является определяющим, но и на другие физические свойства кристаллов, например, на электрические.

Дислокации подобно примесным атомам и собственным точечным дефектам могут создавать дополнительные электронные состояния в запрещенной зоне. Например, при наличии краевой дислокации атомы, образующие край атомной полуплоскости (линию дислокации), имеют ненасыщенные связи. Неспаренные электроны атомов с оборванными связями приводят к появлению дополнительных состояний. При этом возможны два случая:

а) захват дополнительного электрона на ненасыщенную связь с возможным образованием разрешенного состояния электрона в запрещенной зоне (дислокация проявляет акцепторые свойства);

б) разрыв ненасыщенной связи и превращение неспаренного электрона в электрон проводимости (дислокация проявляет донорные свойства).

Таким образом, краевые дислокации по электрическим свойствам оказываются сходными с примесными центрами. Однако между ними имеются и существенные различия. Дислокации образованы непрерывной цепочкой атомов основного вещества (среднее расстояние между ними очень мало вдоль дислокации), и поэтому их нельзя считать изолированными дефектами как в случае примесных атомов. Отдельные дислокации можно представить как одномерные кристаллы, которые в запрещенной зоне могут создавать энергетические дислокационные зоны. Следует заметить, что при наличие примесных атмосфер Коттрелла вблизи дислокации могут возникать и дискретные локальные уровни.

Краевую дислокацию в определенном смысле можно рассматривать как заряженную линию. Если, например, проявляются акцепторные свойства дислокации, то в материале n-типа она будет заряжена отрицатель

9Наличие дислокаций делает кристалл более пластичным. Для упрочения сплавов необходимо уменьшить скорость движения дислокаций путем их торможения, закрепления и т. д. [16].

но и окружена цилиндрическим слоем индуцированного положительного заряда. Локальные области пространственного заряда, образующиеся вокруг дислокаций, могут приводить к рассеянию носителей заряда, тем самым снижая их подвижности, причем подвижность вдоль и перпендикулярно дислокации оказывается существенно различной.

Электрическая активность дислокаций, как правило, отрицательно сказывается на свойствах полупроводниковых приборов, например, вызывает преждевременный пробой в областях прибора, где дислокация

пересекает p n-переход. Дислокации оказывают существенное влияние

и на время жизни свободных носителей. В чистых кристаллах нередко именно они ограничивают времена жизни неравновесных носителей заряда.

Кроме того, дислокации определяют концентрацию точечных дефектов в полупроводниковых монокристаллах, так как являются их «источником» и «стоком». Области увеличенных межатомных расстояний являются потенциальными «стоками» междоузельных атомов и «источниками» вакансий в кристалле, а области сжатых межатомных расстояний — наоборот (см. п. 3). Точечные дефекты появляются также и при пересечении отдельно движущихся дислокаций, и при аннигиляции дислокаций, движущихся в параллельных плоскостях скольжения.

Дислокации увеличивают скорость диффузия атомов в кристалле (см. гл. 8), ускоряют эффекты «старения» материала и другие процессы, протекающие с участием диффузии. Сгущение облаков Коттрелла вокруг дислокаций может привести к образованию включений второй фазы. В некоторых случаях дислокации могут играть определяющую роль в процессах роста кристаллов (см. гл. 4).

Методы наблюдения  дислокаций

Существует достаточно много экспериментальных методов наблюдения дислокаций. Например, за дислокациями можно наблюдать с помощью электронного микроскопа с высокой разрешающей способностью, с помощью рентгеновской топографии. Однако особенно широкое распространение при изучении дислокаций получили методы избирательного травления и декорирования. Метод избирательного травления основан на том, что вблизи дислокаций энергия связи атомов гораздо слабее, чем в недеформированной решетке. Поэтому места выхода дислокаций на поверхность кристалла травятся специально подобранным травителем быстрее, чем окружающая дислокацию поверхность. В результате такого травления на поверхности кристалла возникают ямки травления. Подсчет

их позволяет определять одну из важнейших для полупроводниковых к ристаллов характеристик — плотность дислокаций, выражаемую числом ямок травления на квадратный сантиметр. Расположение на поверхности кристалла и форма ямок травления дают возможность исследовать свойства дислокаций. По фигурам травления можно проследить за образованием и движением дислокаций в процессе пластической деформации. Недостатком метода травления является то, что с его помощью определяются не все дислокации, а лишь те, которые выходят на поверхность образца или образуют петли на незначительной глубине от поверхности. Кроме того, ямки травления могут возникать не только в местах выхода дислокаций на поверхность кристалла, но и в местах скоплений точечных дефектов и включений второй фазы. Поэтому важна правильность идентификации ямок травления.

Метод декорирования основан на том, что дислокации могут служить местами стока примесных атомов, что позволяет их выявлять. Для этого диффузией вводят в кристалл примеси, которые осаждаясь на линиях дислокаций, декорируют их. Это делает возможным их наблюдение с применением, например, инфракрасной микроскопии. В отличие от метода травления метод декорирования позволяет наблюдать дислокационную структуру не только на поверхности, но и в глубине кристалла. Существенным недостатком этого метода является необходимость нагревания и выдержки образцов при повышенных температурах, что влияет на количество и распределение дислокаций. Кроме того, к недостаткам этого метода следует отнести невозможность наблюдения за изменением дислокационной структуры.

В полупроводниковых монокристаллах, выращенных в обычных условиях, плотность дислокаций колеблется в пределах ND = 104–106 см−2. Путем отжига можно понизить эту плотность до 103–104 см−2. Методы

выращивания монокристаллов, практически не содержащих дислокаций, сложны и разработаны только для немногих материалов, в частности для германия и кремния и некоторых соединений AIIIBV (см. гл. 7).

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты