Выращивание кристаллов из газообразной фазы

April 21, 2013 by admin Комментировать »

Широко распространено мнение, что выращивание монокристаллов из газообразной фазы не имеет большого практического значения ввиду малых скоростей роста, присущих этому методу. Действительно, скорость роста монокристаллов из газообразной фазы обычно равна сотым долям мм/ч, что на несколько порядков ниже, чем при вытягивании кристаллов из расплава. Рост из газообразной фазы применяется в основном для выращивания тонких эпитаксиальных пленок, используемых в технологии полупроводниковых приборов, и для получения небольших монокристаллов тугоплавких материалов, а также полупроводниковых соединений, которые плавятся с разложением. Кроме того, поскольку высокопроизводительные методы выращивания монокристаллов из расплавов не всегда обеспечивают высокую однородность их свойств, то для получения особо качественных небольших кристаллов полупроводников используются методы выращивания из газообразной фазы. Эти методы, естественно, не устраняют все причины, приводящие к дефектности кристаллов. Процессы выращивания монокристаллов из газообразной фазы тоже весьма чувствительны к колебаниям внешних условий и составу питающей фазы. Однако влияние этих колебаний значительно сглажено благодаря малым скоростям роста, что способствуют приближению к более равновесным условиям роста.

Сам процесс роста кристаллов из газообразной фазы состоит из тех же этапов, что и процесс кристаллизации из жидкой фазы: 1) подвод кристаллизующегося компонента к поверхности роста (процессы массопереноса); 2) поверхностная диффузия (миграция по поверхности роста и встраивание атомов в кристалл); 3) диффузия в объеме кристалла (миграция в кристалле); 4) отвод теплоты кристаллизации от поверхности роста (процессы теплопереноса). Различие процессов конденсации из газообразной фазы и кристаллизации из жидкой фазы заключается в том, что при росте из газообразной фазы, как правило, не реализуется сплошность контакта этой фазы с фронтом кристаллизации.

С технологической точки зрения методы выращивания кристаллов из газообразной фазы делятся на три большие группы, отличающиеся способом доставки атомов от источника к растущему кристаллу:

1) метод сублимации-конденсации;

2) метод химических реакций разложения–восстановления;

3) метод химического транспорта.

Рассмотрим сначала особенности первой группы методов. В современной технологии полупроводников широкое распространение получили технологические процессы получения монокристаллов из паровой фазы в системах с пониженным давлением (в вакууме). К преимуществам выращивания кристаллов в вакууме относятся чистота условий получения материалов и изученность закономерностей массопереноса в вакууме, последнее позволяет научно обосновать и автоматизировать технологические процессы.

Массоперенос в вакууме включает следующие три основные стадии:

1) переход вещества из конденсированной (твердой) фазы в газообразную; 2) перенос вещества в пространстве от источника до подложки при пониженном давлении газа; 3) конденсация паров вещества на подложке.

Первая стадия — перевод вещества из конденсированной фазы в газообразную в основном осуществляется методами термического испарения или ионно-плазменного распыления.

Сущность процесса термического испарения заключается в нагреве вещества (методами резистивного, электронно-лучевого, высокочастотного, светового и др.) до температуры, когда энергия поверхностных атомов вещества становится выше их энергии связи с соседними атомами, в результате чего они приобретают способность к переходу в паровую фазу.

Ионное распыление (часто называемое катодным распылением) производят путем импульсной передачи энергии от ионов плазмы атомам вещества с последующим радиационным разрушением материала. Ион плазмы при соударении с атомами вещества передает им часть своей энергии. Если переданная энергия превышает пороговую энергию смещения атомов, то последние покидают свои места. При достаточном запасе энергии эти первичные смещенные атомы смещают другие атомы и т. д., в результате чего вдоль пути иона образуются каскады смещенных атомов. Часть из этих атомов достигает поверхности облучаемого кристалла и покидает ее.

В зависимости от соотношения между длиной свободного пробега атома или молекулы в паре l и расстоянием от источника паров до подложки L различают два основных режима второй стадии массопереноса вещества в вакууме.

При l L пар от поверхности испаряемого вещества движется в виде сплошного потока, и массоперенос в этом случае описывается уравнениями газодинамики [37]. Перенос вещества происходит путем молекулярной диффузии2 или конвекции и молекулярной диффузии одновременно.3 В неподвижной среде вещество перемещается, строго говоря, лишь посредством одной молекулярной диффузии. В движущейся среде перенос вещества осуществляется как молекулярной диффузией, так и самой средой в направлении ее движения (ламинарный поток) или ее частицами в разных направлениях (турбулентный поток). В турбулентном потоке конвективный перенос вещества, осуществляемый под действием турбулентных пульсаций (нерегулярных пульсаций скорости), часто называют турбулентной  диффузией.

При l L движение пара от поверхности испарения происходит в виде молекулярных пучков, в пределах которых атомы или молекулы распространяются по прямолинейным траекториям. Основные закономерности для этого режима массопереноса при термическом испарении были установлены Герцем, Кнудсеном и Ленгмюром. Плотность потока испаряющихся частиц (скорость испарения) в режиме молекулярных пучков описывается уравнением Герца-Кнудсена:

j0 = (aиP)/(2πRT /M)1/2,                             (6.9)

где j0 — плотность потока испаряющихся частиц, P — равновесное давление пара испаряемого вещества при температуре T его поверхности, M — молекулярная масса вещества, R — универсальная газовая постоянная, aи — коэффициент испарения, учитывающий факторы, препятствующие уходу атомов или молекул с поверхности конденсированной фазы в паровую.

Если поверхность испарения и паровая фаза находятся в состоянии, близком к термодинамическому равновесию, то распределение по энергиям молекул, падающих на поверхность или покидающих ее, описывается распределением Максвелла. Из него непосредственно вытекает закон косинуса для пространственного распределения молекул, испускаемых нагретой поверхностью:

j(r, ϕ) = j0dsи cos ϕ/πL2 ,                              (6.10)

2 Молекулярной диффузией называется перенос вещества, обусловленный беспорядочным движением самих молекул в неподвижном веществе. В однофазной системе при постоянной температуре и при отсутствии внешних сил диффузия выравнивает концентрацию каждого компонента фазы во всей системе. Если на систему действуют внешние силы или поддерживается градиент температуры, то в результате диффузии устанавливаются градиенты концентрации отдельных компонентов (электродиффузия, термодиффузия; см. 8).

3Суммарный перенос вещества молекулярной диффузией и движущимся потоком вещества называется конвективной  диффузией  или  конвективным  переносом.  Очевидно, что скорость молекулярной диффузии существенно ниже скорости конвективного переноса вещества.

Рис. 6.14. Схема пространственного распределения молекул, испускаемых нагретой поверхностью, в зависимости от взаимного положения элементов поверхности испарения dsи и подложки dsп .

где j(r, ϕ) — плотность потока испаряемых молекул на расстоянии L от источника под углом ϕ к нормали элемента поверхности испарения dsи (см. рис. 6.14).4

Количество вещества, которое осаждается на противолежащей источнику паров растущей поверхности кристалла (подложке), также зависит от положения этой поверхности относительно испаряемой. Как видно из рисунка 6.14, количество вещества, испаряемого в пределах пространственного угла dω, осаждается на площади, которая возрастает с увеличением как расстояния до испаряемой поверхности L, так и угла падения ϕ1. Площадь элемента подложки dsп  для данных dω, L и ϕ1  такова:

dsп = L2dω/ cos ϕ1.                                 (6.11)

Таким образом, поток осаждающегося вещества на единицу площади поверхности растущего кристалла (скорость осаждения) будет:

I = acI0 cos ϕ cos ϕ1/πL2,                             (6.12) где I0 — поток испаряемых молекул, ϕ1 — угол падения вещества на

поверхность растущего кристалла, а ac — коэффициент конденсации. Коэффициент конденсации ac изменяется от 1 до 10−10 для разных веществ и условий. Было выяснено, что коэффициент конденсации зависит в первую очередь от механизма роста и чистоты растущей поверхности.

Для количественной характеристики эффективности ионного испарения  используется  коэффициент  распыления  R,  равный  числу  атомов

4В соответствии с законом косинуса испарение вещества происходит неравномерно во всех направлениях. Оно идет преимущественно в направлениях, близких к нормали к испаряемой поверхности.

материала, выбитых одним падающим ионом [37],

M1M2

R = Kα l(E)(M

+ ) E,                            (6.13)

где Kα — коэффициент, учитывающий агрегатное состояние мишени; M1 — масса бомбардирующего иона; M2 — масса выбитого атома мишени; l(E) — средняя длина свободного пробега иона в материале мишени; E — энергия иона. Значение R в сильной степени зависит от энергии иона, природы распыляемого материала, массы распыляющихся ионов, кристаллографической ориентации поверхности мишени и угла падения ионов. С практической точки зрения можно считать, что угловое распределение атомов, выбиваемых из поликристаллической мишени, близко к закону косинуса, а выбиваемых из монокристаллов, характеризуется наличием в кристалле наиболее предпочтительных направлений испускания атомов. Анизотропный характер эмиссии атомов из монокристаллической мишени при ионном испарении приводит к получению неоднородных по толщине пленок, а поэтому на практике применяется редко.

Рост кристалла из паровой фазы, в основном, происходит по слоистому или слоисто-спиральному механизмам с соответствующими зависимостями скорости роста V кристаллизующейся поверхности от пересыщения (см. гл. 4).

Для выращивания кристаллов из паровой фазы, так же как и для

процесса выращивания из жидкой фазы, можно ввести понятие о лимитирующей стадии процесса. При выращивании из паровой фазы принято выделять диффузионную и кинетическую области роста. Если лимитирующей стадией процесса является подвод кристаллизуемого материала к поверхности роста (осуществляемый посредством молекулярной или конвективной диффузии, а в вакууме — посредством молекулярного потока), то о таком процессе роста говорят как о идущем в «диффузионной области». Если же лимитирующей стадией являются процессы миграции и встраивания в решетку атомов на растущей поверхности, то процесс роста идет в «кинетической области». Если скорости подвода кристаллизуемого материала и миграционных процессов соизмеримы, то говорят, что процесс протекает в «переходной области».

В случае выращивания кристаллов методами химических реакций и химического транспорта химические процессы, связанные с изменением химического состава и свойств исходного вещества, являются важнейшей стадией технологии получения полупроводниковых материалов наряду с теплои массопередачей. Скорость протекания химических про

цессов определяется законами химической кинетики. В большинстве случаев при анализе химико-технологических процессов выделяют отдельные, наиболее важные стороны процесса и рассматривают их взаимное влияние. В первую очередь выделяют основную химическую реакцию, определяющую выход целевого продукта, и устанавливают особенности ее протекания.

Кратко рассмотрим основные закономерности протекания химических реакций с точки зрения химической технологии.

Химические реакции классифицируют по  ряду  признаков.  Реакции подразделяются на простые и сложные. Для описания простых реакций достаточно одного уравнения. К сложным относятся реакции, состоящие из двух и более взаимосвязанных между собой (параллельных или последовательных) простых реакций. Для описания сложных реакций необходимо несколько уравнений. Разделяют необратимые и обратимые химические реакции. Необратимые реакции протекают лишь в одном направлении. Большинство реакций при соответствующих условиях обратимы, то есть могут протекать в прямом и обратном направлении. На производстве обычно стремятся создать такие условия, чтобы основные химические реакции протекали необратимо.  Различают гомогенные реакции, когда реагирующие вещества находятся в одной какой-либо фазе, и гетерогенные реакции, когда реагирующие вещества находятся в разных фазах. Большинство химико-технологических процессов при получении полупроводниковых материалов протекает с участием гетерогенных химических реакций.

Разработка технологического процесса получения целевого продукта требует установления всей совокупности протекающих химических реакций в процессе переработки исходного сырья. Далее определяется вероятность протекания основной реакции, обеспечивающей получение заданного продукта, и рассчитывается максимальный выход целевого продукта (см. ниже) в технологическом процессе.

Вероятность протекания той или иной обратимой реакции определяется по изменению полной энергии Гиббса ∆G, которое рассчитывается с помощью стандартных таблиц или определяется на основе экспериментальных данных. Если ∆G > 0, то наиболее вероятно протекание реакции слева направо; если ∆G < 0, то наиболее вероятно протекание реакции справа налево; если ∆G = 0, то существует состояние равновесия. На основании данных о равновесии основной реакции можно получить представление о максимальном выходе целевого продукта. В состоянии равновесия, к которому стремятся все химические реакции, скорости прямой и обратной реакции становятся одинаковыми, а соотношение концентраций компонентов в рассматриваемой системе (исходные реагенты и продукты реакции) остается неизменным. Концентрации реагирующих компонентов в состоянии равновесия связаны между собой определенным соотношением (константой равновесия K), которое является выражением закона действующих масс. Величина K дает количественную оценку равновесия. Если ее численное значение велико, то равновесие реакции сдвинуто в сторону образования продуктов реакции, если мало, то в смеси преобладают исходные вещества. Знание констант равновесия для химических реакций позволяет рассчитать такие важнейшие характеристики химической технологии, как равновесную степень превращения реагента и равновесный выход продукта. Степень превращения — это отношение количества израсходованного основного реагента к общему его количеству в начале процесса. Выход продукта — это отношение количества полученного целевого продукта к его количеству, которое должно быть получено согласно химическому уравнению.

Основными параметрами, влияющими на равновесие химических реакций, являются температура, давление и концентрация реагирующих веществ. Эти параметра на практике обычно используются для сдвига равновесия в желаемую сторону, то есть для регулирования равновесной степени превращения в соответствии с законом действующих масс. Так, при повышении температуры равновесие смещается в сторону получения целевых продуктов, если химическая реакция протекает с поглощением тепла, а для реакции, протекающей с выделением тепла, повышение температуры смещает равновесие в сторону исходных веществ. При повышении давления равновесие смещается в сторону получения целевых продуктов, если реакция идет с уменьшением числа молекул в газовой фазе. Если же реакция идет с увеличением числа молекул в газовой фазе, то увеличение давления смещает равновесие в сторону исходных продуктов. При повышении концентрации исходных реагентов равновесие реакции смешается в сторону образования целевого продукта.

Рассмотренные основные закономерности равновесия химических реакций позволяют определить лишь максимально возможный (теоретический) выход целевого продукта. Однако в технологических процессах, ограниченных временем, теоретический выход, как правило, не достигается вследствие уменьшения с течением времени суммарной скорости прямой и обратной реакций. В необратимых процессах скорость реакции стремиться к нулю из-за уменьшения концентрации одного из исходных реагентов. В обратимых процессах уменьшение скорости химической реакции до нуля происходит по мере достижения системой равновесия, когда скорости прямой и обратной реакций становятся равными.

Кроме того, рассмотренные термодинамические соображения, приводящие к увеличению выхода продуктов реакции, часто находятся в противоречии с кинетикой процесса. Например, с точки зрения термодинамики экзотермический процесс желательно вести при низкой температуре, так как равновесная степень превращения увеличивается при понижении температуры. Однако скорость реакции при уменьшении температуры, наоборот, снижается. Таким образом, для установления оптимальных технологических условий проведения процесса необходимо одновременно учитывать как термодинамические, так и кинетические факторы.

Скорость химической реакции зависит от многих факторов, основными из которых являются температура, концентрация компонентов, давление и катализаторы. Cильное влияние на скорость реакции оказывает температура. Однако влияние температуры оказывается неодинаковым для различных типов реакций. Скорость простой необратимой и обратимой эндотермических реакций с увеличением температуры в первом приближении экспоненциально возрастает, а обратимой экзотермической реакции сначала увеличивается, достигает максимума, а затем уменьшается. При увеличении концентрации исходных реагентов скорость химической реакции обычно возрастает. Давление также оказывает большое влияние на скорость химических процессов. Особенно сильно это влияние проявляется в тех случаях, когда процессы протекают в газовой фазе или при взаимодействии газов с жидкими или твердыми веществами. Это объясняется тем, что повышение давления равносильно увеличению концентрации реагирующих веществ. Механизм влияния катализаторов на скорость химической реакции связан со снижением энергии активации процесса. Скорость реакции в присутствии катализатора иногда увеличивается в миллионы раз.

В общем случае скорость роста кристалла из газовой фазы меньше или сравнима со скоростью гетерогенной химической реакции, так как взаимодействию реагентов, находящихся в разных фазах, предшествует их доставка к поверхности раздела фаз и массообмен между фазами. В реальных условиях протекания большинства гетерогенных химико-технологических процессов (процесс роста кристалла из газовой фазы) наряду с химической реакцией необходимо учитывать сопутствующие физические процессы, связанные с макросостоянием системы и накладывающиеся на нее. Гетерогенный химико-технологический процесс представ6.4.  Метод сублимации–конденсации представляет собой совокупность физических (теплои массопередача) и химических процессов. Для количественной характеристики такого сложного процесса роста допустимо разделение его на отдельные стадии и анализ каждой из них. Принято выделять по меньшей мере три одновременно протекающих стадии: 1) перенос реагирующих веществ к поверхности раздела фаз — зоне реакции; 2) химическое взаимодействие в зоне реакции; 3) отвод продуктов реакции из зоны реакции. Характер процесса роста может значительно усложняться условиями теплопередачи в зоне реакции (особенно при высоких скоростях выращивания кристаллов, когда скорость процесса главным образом зависит от скорости отвода скрытой теплоты кристаллизации).

Общая скорость процесса будет определяться скоростью самой медленной (лимитирующей) стадии. Если самым медленным звеном процесса в методах химических реакций и химического транспорта является подвод реагирующих веществ к зоне реакции или отвод от нее продуктов реакции, то кинетика суммарного процесса будет лимитироваться диффузионным массопереносом (процесс роста идет в диффузионной области). Если самой медленной стадией процесса является химическое взаимодействие, то скорость всего процесса будет определяться скоростью химических реакций, и тогда считается, что процесс протекает в кинетической области. При соизмеримых скоростях отдельных стадий считается, что процесс протекает в переходной области. Лимитирующая стадия гетерогенного химико-технологического процесса определяется опытным путем при изучении влияния различных факторов технологического режима на общую скорость процесса. Как правило, скорость роста кристалла, выращиваемого из газовой фазы методами химических реакций или химического транспорта, определяется скоростью протекания химических реакций.

Остановимся на методах выращивания кристаллов из газообразной фазы более подробно.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты