Двумерные дефекты – основы материаловедения

May 29, 2013 by admin Комментировать »

Под двумерными дефектами понимают такие нарушения в идеальном расположении атомов в кристалле, которые обладают большой протяженностью в двух измерениях при незначительной (в несколько межатомных расстояний) протяженности в третьем.

Малоугловые границы. Бюргерс предположил, что граница соединения двух монокристаллических блоков, разориентированных друг от

Рис. 3.13. Дислокационные малоугловые границы.

носительно друга на небольшой угол, состоит из совокупности дислокаций. Экспериментальные исследования подтвердили дислокационную модель Бюргерса для границ зерен с малым углом разориентировки. Договорились поэтому совокупность дислокаций, которые образуются при сращивании различным образом ориентированных монокристаллических

блоков  с  малым углом разориентировки (2–5◦),  называть  малоугловой

границей (МУГ). На рис. 3.13 показана простейшая дислокационная модель малоугловой границы для случая, когда краевые дислокации, выстроенные в ряд, образуют границу блоков, симметрично разориентированных на угол θ. Согласно этой модели МУГ представляет собой простую наклонную границу, состоящую из совокупности одинаковых краевых дислокаций, расположенных на расстоянии D b/θ одна над другой

(b — длина вектора Бюргерса) в параллельных плоскостях скольжения.

Анализ полей напряжений взаимодействующих дислокаций показал, что такая система одинаковых краевых дислокаций образует дислокационную сетку, которая наиболее устойчива в кристалле [27]. Заметим, что область упругого искажения решетки вблизи МУГ не распространяется далеко в глубь кристаллических блоков и ограничена в основном слоем, толщина которого равна расстоянию между дислокациями D.10

Чем  больше угол  разориентации, тем  чаще  расположены дислокации на границе между блоками. Наконец, при большой разориентации

θ > 10–12◦ малоугловые границы превращаются в обычные границы меж

10 Если соседние блоки повернуты один относительно другого на угол θ вокруг оси, перпендикулярной к плоскости границы блока, то граница состоит из совокупности винтовых дислокаций и называется границей кручения. Границы блоков общего типа включают в себя и наклон (совокупность краевых дислокаций) и кручение (совокупность винтовых дислокаций).

Рис. 3.14. Схема возникновения двойниковой границы в кристалле.

ду зернами. Границы зерен в поликристаллическом слитке образуются в результате одновременного разрастания нескольких кристаллических зародышей (см. гл. 4). В большинстве случаев растущие зерна кристаллов имеют беспорядочную кристаллографическую ориентацию.

Двойники, дефекты упаковки. В условиях, неблагоприятных для скольжения, пластическая деформация кристаллов может приводить к образованию не дислокаций, а двойников или дефектов упаковки. Двойники и дефекты упаковки представляют собой дефекты, при наличии которых происходят нарушения кристаллографической ориентации частей кристалла из-за нарушения порядка чередования атомных плоскостей. Рассмотрим эти дефекты, например, в плотноупакованной г.ц.к. решетке. В этой решетке последовательность укладки плотноупакованных плоскостей {111} — это последовательность типа ABCABCABC…. В случае двойникового дефекта в г.ц.к. решетке слои {111} чередуются в последовательности ABCA BCB ACBA…. Расположение слоев слева от слоя C в выделенном блоке представляет собой зеркальное отражение расположения слоев справа от него. На рис. 3.14 показано двойникование на примере двумерной решетки. Светлыми кружками на нем представлены положения атомов до двойникования, черными — после двойникования. Величина смещения атомов в каждой из параллельных плоскостей пропорциональна расстоянию данной плоскости от плоскости двойникования. Так как при двойниковании сохраняются неизменными все межатомные расстояния, а углы между связями изменяются только в одном граничном слое, то возникновение двойниковой границы требует небольшой энергии. Двойникование полупроводниковых кристаллов является очень распространенным дефектом структуры. Как правило, этот дефект вызывается теми же причинами, что и образование дислокаций, и часто порождается скоплениями последних. Возникновению двойников способствуют также скопление примесей на фронте кристаллизации, отклонение направления роста от направления температурного градиента и механические напряжения (см. гл. 6).

В случае дефекта упаковки последовательность типа ABCABCABC… имеет вид ABCAB CAC ABCABC, то есть дефект представляет собой как бы тонкий двухатомный слой гексагональной упаковки в г.ц.к. решетке. Нарушение правильного чередования слоев решетки может быть создано путем добавления или изъятия слоя; соответственно различают дефект упаковки типа внедрения и типа вычитания. Приведенный пример иллюстрирует дефект упаковки типа вычитания. Одной из возможных причин, приводящих к появлению дефектов упаковки, является пластическая деформация, происходящая путем сдвига, например, в г.ц.к. решетке по плоскости {111}. На рисунке 3.15 показан слой атомов B в плоскости (111), по которому происходит скольжение в г.ц.к. решетке. Полному сдвигу слоев, лежащих выше этой плоскости, соответствует дислокация с вектором Бюргерса (a/2)<110>; однако такой сдвиг энергетически невыгоден. Энергия полной дислокации с вектором Бюргерса (a/2)<110> может понизиться вследствие ее распада в плоскости (111) на две дислокации с векторами Бюргерса в направлениях <121> в той же плоскости. Дислокации с векторами Бюргерса меньшими, чем параметр решетки, называются частичными; а комплекс, состоящий из двух частичных дислокаций, связанных между собой дефектом упаковки, называют растянутой дислокацией. Проследим, как меняется порядок чередования атомов при распаде полной дислокации на две частичные с помощью рисунка 3.15. Видно, что трансляция AA переводит атомы в одинаковые положения, не меняя их чередования. Иначе говоря, если полная дислокация b1 проходит через кристалл, вызывая пластический сдвиг на b1, то структура кристалла вдоль плоскости скольжения полностью восстанавливается, а на поверхности кристалла появляется ступенька шириной b1. В противоположность этому трансляция b2 или b3, то есть сдвиг на вектор Бюргерса частичной дислокации, нарушает этот порядок, переводя лунку A в C или C в A. Таким образом, вместо прямого скольжения

A A реализуется зигзагообразное скольжение A C A, и в результате меняется порядок положений слоев {111}, то есть образуется дефект

упаковки.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты