Экспериментальное  изучение  процессов зародышеобразования,  роста и совершенства эпитаксиальных пленок в зависимости от условий роста

May 26, 2013 by admin Комментировать »

Экспериментальное изучение процессов зародышеобразования, роста эпитаксиальных пленок и их качества в зависимости от условий выращивания сейчас проводится с помощью самой современной аппаратуры непосредственно в процессе конденсации. На основании этих исследований можно сделать выводы о местах преимущественной адсорбции атомов, изучить влияние загрязняющих газов на образование зародышей, оценить плотность, совершенство и ориентацию зародышей, а также количественно оценить Eдиф и Eдес.

Наблюдения в вакууме 10−9–10−10 мм рт. ст. показывают, что, как правило, зародыши образуются преимущественно на неровных участках

подложки, на плоскостях с большими индексами Миллера и с низкой ретикулярной плотностью. Поперечный размер зародыша увеличивается пропорционально корню квадратному из времени, что характерно для роста по механизму поверхностной диффузии.

При низких Tk зародыши образуются на многослойном адсорбате (промежуточный слой толщиной 1–5 монослоев), который либо аморфен, либо представляет собой однородный слой, повторяющий структуру подложки. С увеличением Tk толщина адсорбата уменьшается. Существуют два возможных подхода (для соответствующих случаев) объяснения механизма образования зародышей ориентированной пленки на многослойном адсорбате: 1) диффузионные параметры адсорбированных атомов на поверхности подложки сильно отличаются от параметров поверхностной самодиффузии; 2) связи атомов в первом осажденном слое с атомами подложки гораздо прочнее, чем межатомные связи в осаждаемом веществе.

Электронная микроскопия высокого разрешения в сочетании с методами электронной дифракции позволяет исследовать процесс образования конденсатов на стадии частичного заполнения первого монослоя. В большинстве случаев ориентированного роста на ранней стадии конденсации образуются изолированные трехмерные зародыши, так как количество питающего вещества недостаточно для образования монослоя. Эти зародыши обычно становятся видимыми в электронном микроскопе после того, как их размер достигает 10

A˚ . Случаи роста конденсатов монослоями весьма редки. При гомоэпитаксии, когда растущий кристалл продолжает структуру подложки, в принципе, возможен рост без образования изолированных зародышей. Однако, как правило, образование полупроводниковых эпитаксиальных пленок происходит посредством возникновения и дальнейшего роста именно изолированных зародышей, что связано с присутствием загрязнений на поверхности подложки, которые служат центрами кристаллизации.

Электронографические и электронно-микроскопические исследования показали, что на начальной стадии роста эпитаксиальных пленок могут образовываться зародыши с различными ориентациями. Это явление широко распространено при эпитаксиальном росте и оказывает значительное влияние на структурное совершенство выращиваемых пленок. Вопрос о причинах образования зародышей с разными ориентациями является до сих пор предметом многочисленных теоретических и экспериментальных исследований. Исходят из того, что при образовании зародышей определяющая роль принадлежит поверхностной энергии, поэтому чаще всего образуются зародыши с минимальной поверхностной энергией. Наличие разнотипных зародышей означает, что существует несколько типов зародышей, отличающихся разной ориентацией и удовлетворяющих такому требованию (одинаковая минимальная поверхностная энергия при одинаковых условиях роста). Было исследовано влияние различных факторов (температуры подложки, скорости конденсации, структуры и чистоты подложки, вакуума и т. д.) на ориентацию зародышей. В результате были найдены условия роста, при которых образуются зародыши лишь с одной ориентацией (см. гл. 9.2).

Электронная микроскопия дает сведения и о влиянии условий роста на образование и плотность зародышей. Количественное определение зависимости плотности зародышей от условий кристаллизации (Tk, скорости конденсации vk, состояния подложки) обнаружило удовлетворительное согласие между экспериментальными данными и молекулярно-кинетической теорией образования зародышей и позволило оценить такие параметры роста, как Eдес  и Eдиф.

Наличие на поверхности подложки адсорбированных газов и загрязнений сопровождается рядом эффектов, влияющих на плотность, на совершенство и на ориентацию зародышей, а следовательно, и на их последующий рост. В конечном счете было показано, что адсорбированные газы и загрязнения на подложке приводят к изменению структуры и свойств конденсатов. Действительно, наличие инородных адсорбированных атомов способствует увеличению плотности зародышей, так как увеличивается число активных центров кристаллизации на поверхности подложки, и заметно изменяет подвижность адсорбированных атомов растущей эпитаксиальной пленки. Кроме того, адсорбированные газы способны существенно изменять структуру растущего слоя, так как при наличии на поверхности подложки газовых примесей может происходить рост зародышей с ориентацией, отличающейся от ориентации зародышей, образующихся в условиях сверхвысокого вакуума. В итоге на стадии коалесценции происходит срастание различным образом ориентированных зародышей, что ухудшает структурное совершенство пленки.

Таким образом, вопрос о получении атомно-чистых поверхностей подложки заслуживает особого внимания. Чтобы создать и сохранить чистую поверхность, необходима длительная термическая обработка или ионная (электронная) бомбардировка с последующим поддержанием сверхвысокого вакуума порядка 10−10  мм рт. ст. Без такой обработки и в обычном вакууме (10−6–10−7  мм рт. ст.) практически все кристаллы, используемые в качестве подложек, покрыты слоем адсорбированных газов. При комнатной температуре такой слой создается за несколько секунд.

Следует отметить, что различные виды обработки поверхности (термическая или ионная чистка, скалывание в вакууме, электронная бомбардировка и др.) сами по себе так же приводят к заметному изменению плотности зародышей. Это связано с изменением таких характеристик, как Eдиф и Eдес. Например, электронная бомбардировка на начальных стадиях роста пленок приводит 1) к повышению плотности зародышей (наблюдается скопление вакансий в местах образования зародышей); 2) к улучшению совершенства структуры и уменьшению электрическое сопротивление пленок, так как растущие из зародышей островки получаются глаже, а их коалесценция начинается гораздо раньше; 3) к образованию хорошо ориентированных монокристаллических пленок.

Таким образом, структура пленок зависит от начальной структуры зародышей, от скоростей их  роста  и особенностей коалесценции. Загрязнения на поверхности подложки сказываются на совершенство выращиваемых пленок как в момент образования зародышей, так и при их срастании. Повышение чистоты эксперимента обычно способствует повышению совершенства эпитаксиальных пленок и понижению температуры эпитаксии.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты