Экспериментальное  определение коэффициентов  диффузии

May 11, 2013 by admin Комментировать »

Для изучения диффузии в твердых телах в настоящее время разработано большое число физических и физико-химических методов исследования. Эти методы основаны на измерении распределения концентрации диффундирующего вещества в исследуемом образце в зависимости от времени и температуры диффузионного отжига. При этом распределение концентрации определяется либо прямыми измерениями ее в различных частях исследуемого образца с помощью химических, спектроскопических, рентгеновских, электронографических, радиоактивных и других методов анализа, либо же косвенным образом — посредством изучения характера изменений некоторых физических свойств вещества, вызванных проникновением диффундирующей примеси.

Широкое развитие получили методы изучения диффузионных процессов, основанные на использовании радиоактивных изотопов. Им присуща высокая чувствительность, универсальность и сравнительная простота. В настоящее время наиболее перспективным методом измерения диффузионных профилей является масс-спектроскопия вторичных ионов

1С физической точки зрения Cs не может превышать величины растворимости диффундирующего вещества в растворителе, то есть Csmax = Cim, где Cim — предельная растворимость примеси в данном веществе при температуре диффузии.

 (МСВИ). Этот метод обеспечивает измерение низкой концентрации примесей (например, ∼5 · 1015  см−3  бора и мышьяка в кремнии), обладает

высоким разрешением по глубине (несколько нанометров), универсальностью. Метод МСВИ наряду с радиоактивным методом позволяет определить общее количество введенной примеси, поэтому, если необходимо определить электрически активную часть примеси, то следует воспользоваться электрическими методами. К настоящему времени разработаны и широко используются специфические полупроводниковые методы измерения диффузионных профилей электрически активных примесей (или их электрически активной части) и их коэффициентов диффузии в полупроводниках. Эти методы основаны главным образом на исследовании изменений электрических свойств в различных частях полупроводникового образца, обусловленных проникновением туда диффундирующих атомов. Эти методы не столь универсальны, как радиоактивные и МСВИ, но их преимуществом является незначительная трудоемкость и отсутствие специфики, связанной с применением радиоактивных изотопов. Однако следует иметь в виду, что практическое применение полупроводниковых методов исследования возможно только при использовании материалов высокой химической чистоты. Кроме того, диффундирующее вещество должно быть электрически активной примесью и оказывать влияние на электрические свойства исследуемого полупроводника. К полупроводниковым методам относятся метод электронно-дырочного перехода, метод фото-э.д.с., метод электропроводности и емкостный метод [39, 41]. Мы

ниже  рассмотрим лишь один из  них — метод p n-перехода, позволяющий непосредственно определять концентрацию даже при очень малых глубинах проникновения примесей, когда измерение эффекта Холла невозможно.

Метод  электронно-дырочного  перехода

Известно, что характерной особенностью полупроводников является то, что введением донорных или акцепторных примесей можно придавать полупроводниковому материалу электронный или дырочный характер проводимости. Введение соответствующих примесей (акцепторных в случае полупроводников n-типа и донорных — в случае полупроводников p-типа) в поверхностный слой образца приводит к возникновению достаточно узких переходных областей, где характер проводимости вещества изменяется с электронного на дырочный или наоборот. Эти переходные области (p n-переходы) при диффузионном отжиге перемещаются в направлении градиента концентрации диффундирующей примеси. При этом скорость перемещения перехода будет определяться скоростью диффузии примеси. Поэтому, исследуя скорость перемещения границы электроннодырочного перехода в зависимости от температуры и времени диффузионного отжига, можно по полученным данным вычислить коэффициент диффузии. Глубина залегания p n-перехода и его форма (резкий или размытый переход) при заданной температуре и времени диффузионного отжига в каждом случае определяются начальными и граничными условиями опыта (диффузия из тонкого слоя, нанесенного на поверхность образца; диффузия из постоянного источника и т. д.).

Пусть в исходный материал, например n-типа, с известной концентрацией, равномерно распределенной по объему донорной примеси Cd, диффузией при температуре T в течение времени t вводится акцепторная примесь. Затем кристалл достаточно быстро охлаждается, поверхность его сошлифовывается под малым углом α (рис. 8.7) и с помощью точечного зонда исследуется вид вольт-амперной характеристики или определяется знак термо-э.д.с. вдоль сошлифованной поверхности. Если диффундирующее вещество электрически активно и каждый атом, проникший в исследуемый образец, создает там электрон или дырку, а также известны начальные и граничные условия опыта, то можно найти характер распределения концентрации введенных носителей тока в исследуемом образце. В образце p n-переход возникает в том месте, где концентрация носителей тока, вносимых примесными атомами, становится равной концентрации противоположных по знаку заряда исходных носителей тока в исследуемом образце Cd = Ca(x, t).

Сущность  этого  метода  заключается  в  одновременном  определении границ p n-перехода в двух образцах с разными начальными значениями концентрации носителей тока Cd1 и Cd2 (предполагается, что подвиж

Рис. 8.7. Схема метода электронно-дырочного перехода для определения коэффициента диффузии.

При  особо  точных  измерениях  коэффициентов  диффузии  следует иметь  в  виду  следующее  обстоятельство.  При  определении  границы p n-перехода с помощью термозонда полученное значение x, как правило, несколько отличается от действительного значения, при котором концентрация носителей тока, обусловленных диффузией примесных атомов, в точности равна концентрации исходных носителей тока в образце. Такое различие обусловлено тем, что при наличии носителей двух знаков (что имеет место в переходной области) коэффициент термо-э.д.с. α в полупроводниках зависит не только от концентрации, но также от подвижностей и эффективных масс носителей тока [6,41]. Поскольку различие в эффективных массах мало сказывается на α (из-за логарифмической зависимости), то равенство нулю коэффициента термо-э.д.с. определяется условием: nµ= pµp, где n и p, µи µ— концентрации и подвижности электронов и дырок соответственно. Поэтому для точного определения D величину Cd в уравнениях (8.19) и (8.21) следует умножить на отношение подвижности вводимых носителей тока к подвижности основных носителей тока.

При измерении коэффициентов диффузии методом электрон-дырочных  переходов также  следует обращать  особое внимание на наличие освещения поверхности образца, так как последнее приводит к появлению фото-э.д.с., которая, накладываясь, например на измеряемую термо-э.д.с., часто совершенно искажает результаты измерений и приводит к ошибочным выводам.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты