Ионная составляющая связи и подвижность носителей  заряда

May 10, 2013 by admin Комментировать »

Установление взаимосвязи между степенью ионности полупроводниковых соединений λ и подвижностями носителей заряда µ в них затруднительно, прежде всего, из-за сильной чувствительности µ к дефектам кристаллов. В то время как измерения Eg в образцах с широким диапазоном значений концентрации примесей и дефектов дают одно и то же значение, для измерения «решеточной» подвижности µ(см. ниже) необходимо иметь чистые и достаточно совершенные кристаллы. Поэтому далеко не во всех полупроводниках по измеренной при некоторой температуре подвижности можно говорить о надежном определении µL. С другой стороны, сама теория химических связей не дает возможности рассчитывать численные величины подвижности носителей заряда из значений кристаллохимических параметров, характеризующих тип химической связи, можно говорить лишь о тенденциях, знание которых полезно для прогнозирования свойств получаемых полупроводниковых материалов.

Прежде чем рассматривать влияние ионной составляющей связи на подвижность носителей заряда µ, обсудим некоторые вопросы, связанные с самим понятием µ. Подвижность носителей заряда определяется их рассеянием в кристалле. В идеальной кристаллической решетке рассеяние отсутствует. В реальных же кристаллах рассеяние носителей происходит на нарушениях периодичности кристаллической структуры, то есть любых отклонениях силового поля решетки от идеально периодического. Эти нарушения могут быть вызваны разными причинами:

1) тепловыми колебаниями атомов или ионов, составляющих кристаллическую решетку; 2) примесями, которые могут находиться в кристалле либо в ионизованном, либо в нейтральном состоянии; 3) всевозможными дефектами решетки (вакансиями, дислокациями, границами кристаллических зерен, трещинами и т. д; см. гл. 3). Кроме того, носители могут рассеиваться друг на друге.

Ограничимся рассмотрением рассеяния носителей заряда на тепловых колебаниях решетки, то есть рассмотрением «решеточной» подвижности (при этом необходимо пользоваться данными для чистых и структурно совершенных кристаллов). При достаточно высоких температурах атомы решетки совершают малые тепловые колебания около своих равновесных положений. Среди возможных типов колебаний выделяют акустические колебания14 и оптические колебания.15 Акустические колебания отвечают смещениям элементарной ячейки как целого, а оптические — внутренним деформациям в ней при почти неподвижном центре тяжести ячейки. Эти малые колебания распространяются по всему кристаллу в виде волн. Введя специальные, так называемые нормальные, координаты, полную энергию колеблющегося кристалла можно представить как сумму энергий невзаимодействующих квазичастиц с энергией kω(q) и квазиимпульсом kq, где ω(q) — частота колебаний атомов кристалла, а q — волновой вектор волны. Эти квазичастицы носят название фононов. Согласно существующим представлениям, рассеяние носителей заряда на тепловых колебаниях решетки можно рассматривать как их взаимодействие с фононами или, что тоже самое, с колеблющейся решеткой. Это взаимодействие сводится к поглощению или испусканию фонона, при этом увеличивается или уменьшается, соответственно, энергия электрона.

Различают неполярное и полярное рассеяние. Неполярное рассеяние на акустических фононах возникает вследствие того, что при распространении волн в кристалле на периодический потенциал идеальной кристаллической решетки накладывается дополнительный периодический потенциал, вызванный смещением атомов из положений равновесия (деформацией решетки). Это приводит к изменению потенциальной энергии носителя заряда, выражение для которой оказывается того же типа, что и аналогичное выражение при однородной статической деформации, возникающей при сжатии или растяжении кристалла. Поэтому метод описания рассеяния (изменения энергии) носителей заряда на акустических фононах назвали методом потенциала деформации [6]. Аналогичные рассуждения могут быть проведены и для неполярного рассеяния на оптических фононах. Однако конкретное выражение для потенциала деформации при рассеянии на акустических и оптических фононах получается разное [6].

14При длинноволновых акустических колебаниях все атомы элементарной ячейки смещаются практически синфазно.

15При оптических колебаниях атомы движутся в противофазе, а центр тяжести элементарной ячейки остается на месте.

Практически неполярное рассеяние наиболее ярко проявляется в гомеополярных (атомных) полупроводниках с преимущественно ковалентными связями (Si, Ge и др.).

Механизм полярного рассеяния связан с существованием эффективных зарядов у атомов решетки. Оптические колебания решетки вызывают изменение дипольного момента элементарной ячейки, то есть колебания вектора поляризации среды.16 Это приводит к изменению энергии электрона, не связанному с потенциалом деформации. Следует заметить, что в гетерополярных кристаллах одновременно и независимо с полярным рассеянием может происходить и неполярное рассеяние, однако оно менее эффективно. Это связано с тем, что силы, отвечающие за возникновение полярного рассеяния, — дальнодействующие, в результате чего на электрон одновременно оказывают влияние изменения дипольного момента во многих элементарных ячейках. Поэтому обычно полярное рассеяние оказывается преобладающим в гетерополярных полупроводниках с ковалентно-ионными связями и не слишком малыми эффективными зарядами (InAs, GaAs и др.). Как правило, подвижность носителей при достаточно высоких температурах (когда преобладает рассеяние на колебаниях решетки)17 в кристаллах с большой долей ионной составляющей связи значительно ниже, чем в кристаллах с меньшей долей.

В кристаллах, не  имеющих центра инверсии и  состоящих из разноименно заряженных ионов, механическая деформация сопровождается их электрической поляризацией и возникновением электрического поля. Этот пьезоэлектрический эффект обусловлен тем, что при механической деформации такого кристалла отдельные подрешетки, каждая из которых состоит из ионов одного и того же знака, могут смещаться относительно друг друга и при этом возникает электрический момент. При колебаниях решетки в таких кристаллах на носители заряда действуют силы со стороны электрического поля, что приводит к дополнительному механизму рассеяния. Это так называемое пьезоэлектрическое рассеяние на акустических фононах. Оно наблюдается в кристаллах соединений AIIIBV (GaAs, InSb), AIIBVI (CdS, CdSe) и других.

Экспериментально установлено, что в чистых элементарных полупроводниках (с преобладающей долей ковалентной связи) при комнатной температуре основную роль играет неполярное рассеяние носителей заря

16 По этой причине колебания рассматриваемого типа иногда называют поляризационными.

17 При низких температурах, когда колебания решетки не интенсивны, то есть число фононов мало, преобладает рассеяние носителей на нейтральных атомах, точечных дефектах или ионах примеси.

да на акустических фононах. К нему добавляется неполярное рассеяние на оптических фононах. При переходе к соединениям (чистые образцы), имеющим ионную составляющую связи, начинает преобладать рассеяние носителей заряда на поляризационных фононах. Поэтому можно ожидать уменьшения µпри переходе от элементарных полупроводников к соединениям изоэлектронного ряда. Однако в наиболее обширных изоэлектронных рядах α-Sn и Ge подвижность электронов µсначала растет, а лишь затем начинает резко падать (табл. 2.6). Для того чтобы объяснить этот факт, необходимо иметь в виду, и это очень существенно, что при сравнении подвижностей носителей в разных кристаллах следует учитывать, что на их величину, кроме степени ионности соединения, также влияет и масса носителей заряда, и сама зонная структура кристалла [6]. Какой из факторов окажется преобладающим, часто трудно предсказать.

В соединениях AIIIBV максимум подвижности µ ± 78000 см2/В · с наблюдается у InSb, в AIIBVI максимум µ ± 2300 см2/В · с наблюдается у HgTe, в AIBVII  максимум µ ± 50 см2/В · с наблюдается у AgI. Во

всех этих трех соединениях q∗ оказывается минимальным или близким к минимальному значению эффективных зарядов, характерных для соответствующей группы соединений, поэтому полярное рассеяние в них минимально. Таким образом, в каждой из групп соединений ANB8−N  максимум подвижности наблюдается вблизи минимального значения q∗, а  при переходе от AIIIBV к AIIBVI и далее к AIBVII величина максимальной

подвижности падает с увеличением равновесной ионности соединения, так что и относительная полярность связи ∼ q∗, и равновесная ионность

определяют величины подвижности электронов в полупроводниковых соединениях с ковалентно-ионной межатомной связью.

Подвижности дырок во всех соединениях ANB8−N, как правило, не превышают их величин в полупроводниках IVA подгруппы. В изоэлектронных рядах, приведенных в табл. 2.6, подвижность дырок резко уменьшается при переходе от элементарных полупроводников к соединениям и далее продолжает уменьшаться с ростом степени ионности соединения.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты