Метод химического транспорта (реакций переноса)

May 5, 2013 by admin Комментировать »

В основе получения монокристаллов из газовой фазы методом химического транспорта лежат химические реакции также, как и в основе метода диссоциации и восстановления газообразных соединений. Рост кристалла происходит в результате реакций разложения газообразных молекул. Примером использования этого метода может служить получение монокристаллического германия:

GeI4 = Ge + 2I2 .                                 (6.16)

Сущность метода  реакций  переноса  заключается  в  следующем (рис. 6.17). При взаимодействии газообразного реагента X (I2 в нашем примере) с твердым, нелетучим веществом A (источник Ge) при определенных значениях температуры и давлениях паров X могут образовываться разные по составу летучие соединения. При неизменных условиях между ними устанавливается некоторое состояние равновесия. Если изменить температуру системы, то состояние равновесия нарушится и состав компонентов смеси изменится. Выбирая условия, при которых в области источника идет преимущественно реакция образования летучего соединения XA (GeI4 ), а в области кристаллизации — его разложение с выделением компонента A (Ge), можно обеспечить условия, при которых

Рис. 6.17. Схема выращивания кристаллов с использованием газотранспортных реакций в открытой (а) и закрытой (б) системах: 1 — реактор; 2 — лодочка с летучим компонентом; 3 — лодочка с нелетучим компонентом; 4 — подложка с кристаллом 5; 6 — кварцевая ампула; 7 — исходное соединение.

будет происходить перенос A (Ge) от источника к растущей поверхности и рост монокристалла вещества A (Ge).

Для того чтобы осуществить перекристаллизацию вещества A, его помещают в один конец откачанной кварцевой ампулы, в которую вводится определенное количество газообразного реагента X, после чего ампула запаивается. Затем ампула помещается в двухзонную печь таким образом, что источник находится при температуре T1, а зона кристаллизации, расположенная на другом конце ампулы, находится при температуре T2. Температуры T1 и T2 подбираются так, чтобы при T1 в результате химических реакций реагента X с материалом источника образовывалось летучее соединение, которое, попадая в зону с температурой T2 , разлагалось, образуя вещество A и газообразный реагент X. Реагент X, диффундируя по ампуле, снова попадает в зону источника, снова образует летучее соединение, молекулы которого, попадая в зону кристаллизации, распадаются, и т. д. Таким образом, небольшое количество реагента X может обеспечить перенос и перекристаллизацию произвольно большого количества вещества A.

Необходимыми условиями для осуществления переноса являются обратимость химической реакции и наличие градиента концентрации, которое является следствием наличия перепада температур или давлений. Процесс переноса вещества состоит из трех этапов: 1) химической реакции газообразного переносчика с веществом источника; 2) перемещения газообразного соединения от источника к зоне роста; 3) химической реакции, в результате которой выделяется кристаллизуемое вещество.

Выбор химических реакций переноса осуществляется на основе следующих общих правил:

1. Перенос вещества посредством обратимой реакции может происходить лишь в том случае, если переносимый компонент конденсированной фазы присутствует только в одной части уравнения.

2. Реакции, которые при равновесных условиях сильно смещены в

одну или другую сторону, не приводят к заметному переносу вещества.

3. Эффективность и направление переноса определяются суммарным изменением полной энергии ∆G = ∆H T S.

4. Выход реакции тем больше, чем больше суммарное изменение свободной энергии.

Скорость  роста  монокристаллов в  этом  методе  определяется либо

диффузионными и конвективными процессами при малых давлениях в системе — тогда скорость роста невелика; либо скоростями реакций, протекающих в зоне источника и в зоне кристаллизации при высоких давлениях — при этом наблюдается резкое повышение скорости роста за счет интенсификации конвекционных потоков.

Таким способом могут выращиваться монокристаллы Ge, GaAs; этот метод является весьма удобным способом получения тугоплавких полупроводников: халькогенидов переходных и редкоземельных элементов (например MnTe, GdS, EuS), сложных полумагнитных полупроводников (HgCr2Te4).

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты