Методы вытягивания кристаллов из расплава

May 13, 2013 by admin Комментировать »

Данная группа методов в настоящее время является наиболее распространенной при промышленном производстве больших монокристаллов полупроводников с контролируемыми и воспроизводимыми свойствами. Принцип метода вытягивания кристаллов из расплава впервые был предложен Чохральским в 1916 г. Сейчас существует значительное количество различных его модификаций. Суть метода заключается в следующем.

Исходный материал (в виде порошка или кусков поликристаллов), прошедший стадию тщательной очистки, загружают в тигель и нагревают до расплавления. Процесс проводят в вакууме или в атмосфере инертного газа. Затравочный кристалл размером в несколько миллиметров, установленный в охлаждаемый кристаллодержатель и ориентированный в нужном кристаллографическом направлении, погружают в расплав. После частичного подплавления затравки и достижения определенного температурного режима начинается вытягивание таким образом, чтобы кристаллизация расплава происходила от затравочного кристалла. Диаметр растущего кристалла регулируется подбором скорости вытягивания и нагревом расплава.

Установка для выращивания кристаллов методом Чохральского включает четыре основных узла (рис. 6.2): 1) печь, в которую входят тигель, механизм вращения, нагреватель, источник питания и камера; 2) механизм вытягивания кристалла, содержащий стержень с затравкой, механизм вращения затравки и устройство для зажима затравки; 3) устройство для управления составом атмосферы, состоящее из газовых источников, расходомеров, системы продувки и вакуумной системы; 4) блок управления, в который входят микропроцессор, датчики и устройства вывода.

Рассмотрим более подробно основные стадии технологического процесса выращивания монокристалла методом Чохральского.

Непосредственно перед началом выращивания кристалла проводят выдержку расплава при температуре, заметно превышающей температуру плавления. Такая выдержка необходима для очистки расплава от летучих примесей, которые, испаряясь из расплава, осаждаются на холодных частях камеры. На поверхности расплава не должно быть пленок или посторонних частиц, так как они могут приводить к образованию поликристаллов вместо требуемых монокристаллов. После очистки расплава его температура понижается до температуры, немного превышающей температуру плавления материала. Кроме того, система используемых нагревателя, экранов, подставки для тигля должна обеспечивать такое распределение температуры в расплаве, чтобы кристаллизация началась в точке погружения затравки. Этому случаю соответствует понижение температуры расплава от стенок и дна тигля к центральной части расплава. Температура в центральной части расплава должна немного превышать температуру плавления материала. Температура же стенок тигля в течение всего процесса должна быть выше Tпл (во избежание паразитной кристаллизации на стенках тигля).

Затем производят прогрев затравки путем выдержки ее над расплавом при температуре возможно более близкой к температуре кристаллизации. Это необходимо для предотвращения термоудара в момент контакта более холодной затравки с поверхностью расплава, так как термоудар приводит к существенному увеличению плотности дислокаций в затравке, которые прорастают в выращиваемый кристалл, ухудшая его структурное совершенство.

Качеству затравки уделяют особое внимание, поскольку ее структурное совершенство во многом определяет совершенство выращиваемого кристалла. Затравки вырезают из монокристаллов, кристаллографически ориентированных относительно направления вытягивания определенным образом, с минимальной плотностью дислокаций. Поверхностные нарушения удаляют химическим травлением и полировкой. Сечение затравки (имеющее форму квадрата или треугольника) делают минимально возможным для того, чтобы число дислокаций, наследуемых выращиваемым монокристаллом и возникающих вследствие термоудара, было минимально. Однако сечение затравки не должно быть слишком малым, иначе произойдет разрыв между затравкой и выращиваемым монокристаллом при вытягивании. Затравка должна быть ориентирована таким образом, чтобы облегчить движение и выход на поверхность кристалла дислокаций, проросших из затравки, и обеспечить максимальную симметризацию формы растущего кристалла. Например, кристаллы со структурой типа алмаза на практике часто выращивают вдоль направления <111>, перпендикулярного плоскости с теми же индексами, так как плоскости {111} являются  плоскостями скольжения, в которых  легко  перемещаются дислокации, образованные различными источниками. Стремление к выращиванию симметричных монокристаллов (цилиндры с постоянным по длине диаметром) имеет глубокую основу. Однородность формы означает однородность и симметрию теплового режима роста монокристаллов, постоянство скорости кристаллизации и, в конечном счете, однородность электрофизических параметров по длине и поперечному сечению кристалла (см. ниже). Как правило, для максимальной симметризации теплового режима системы тигель и растущий кристалл вращаются в противоположных направлениях, при этом обеспечиваются и наилучшие условия перемешивания расплава.

После прогрева затравки ее конец погружают в перегретый расплав и частично подплавляют с целью удаления поверхностных дефектов и загрязнений. При этом граница раздела расплав–затравка оказывается расположенной над поверхностью расплава. Высота расположения границы раздела зависит от степени перегрева расплава и условий теплоотвода от затравки.

В первом приближении можно считать фронт кристаллизации при вытягивании плоским, как показано на рис. 6.3. Тогда высоту цилиндрического столба расплава можно оценить, приравнивая вес столба жидкости,

Рис. 6.3. Положение границы раздела кристалл–расплав при выращивании кристаллов методом Чохральского.

висящего на затравке, силам поверхностного натяжения, действующим по окружности фронта кристаллизации, и записать

πr2hρl g = 2πrσ,                                       (6.1)

h = 2σ/rρlg,                                         (6.2)

где σ — коэффициент поверхностного натяжения расплава, ρ— плотность расплава, g — ускорение силы тяжести, r — радиус столба расплава, h — высота столба расплава.

При сильном перегреве расплава возможен разрыв столба при вытягивании; при слишком низкой температуре расплава вокруг затравки образуется область переохлаждения, вследствие чего даже при отсутствии перемещения происходит заметное наращивание кристалла на затравку. Поэтому вытягивание кристалла необходимо начинать при промежуточной между двумя этими случаями температуре, то есть когда затравка сцеплена с расплавом, но роста кристалла еще не происходит. При вытягивании кристаллизация происходит у границы раздела.

На начальной стадии вытягивания после оплавления затравки производят формирование так называемой шейки монокристалла. При этом, как правило, диаметр шейки не превышает линейного размера поперечного сечения затравки, а длина составляет несколько ее диаметров. Формирование шейки производят понижая температуру расплава с большой линейной скоростью, что соответствует появлению больших осевых градиентов температуры. Это приводит к пересыщению вакансиями области монокристалла вблизи фронта кристаллизации, что при соответствующей кристаллографической ориентации затравки облегчает движение и выход на поверхность кристалла дислокаций, проросших из затравки.

После операции формирования шейки посредством варьирования температурных условий роста кристалла осуществляется разращивание монокристалла от размеров шейки до номинального диаметра слитка, то

есть «выход на диаметр». Угол разращивания делается достаточно малым для предотвращения возникновения термических напряжений и соответственно увеличения плотности дислокаций.

После выхода на диаметр температурные условия выращивания кристалла стабилизируют с целью получения монокристаллического слитка высокого структурного совершенства. Ведущая роль на данном этапе принадлежит тепловым условиям процесса, так как они определяют градиенты температуры в кристалле и расплаве, от которых, в свою очередь, зависят форма фронта кристаллизации, скорость роста кристалла, диаметр, структурное совершенство и, в конечном счете, электрофизические параметры выращиваемого кристалла.

Рассмотрим процесс теплопередачи на фронте кристаллизации.

Если температура расплава равна T , а температура кристаллизации — T0, то теплоподвод от расплава к фронту кристаллизации через столбик жидкости, пренебрегая его теплоизлучением, характеризуется величиной

Q1 = βl(T T0)πr2/h,                                    (6.3)

где βl  — теплопроводность расплава.

При скорости вытягивания f на фронте кристаллизации будет выделяться количество тепла, равное

Q2 = πr2Lρsf,                                       (6.4)

где L — скрытая теплота кристаллизации; ρ— плотность кристаллизуемого материала.

Теплоотвод через твердый образец равен

Q3 = πrs dTs/dx,                                    (6.5) где β— теплопроводность твердого вещества вблизи температуры плавления; dTs/dx — температурный градиент в кристалле. В этом соотношении неявно учтен и теплоотвод посредством излучения, так как последний учитывается в результирующем градиенте температуры вдоль растущего кристалла [22].

Условие теплового баланса на границе раздела будет выполнено, если

тепловой поток Q3, отводимый от фронта кристаллизации растущего кристалла, равен сумме теплового потока Q1, поступающего к фронту кристаллизации из расплава, и количества теплоты Q2, выделяющегося на фронте кристаллизации вследствие самой кристаллизации: Q1 + Q2 = Q3. Подстановка соответствующих значений Q и h приводит к выражению:

βl(T T0)/h + Lρsf = βs dTs/dx,                       (6.6)

откуда

= (βs dTs /dx Lρs f)2σ

ρlgβl(T  T0),                               (6.7)

Из этого выражения видно, что при заданном градиенте температур вдоль растущего кристалла и постоянной скорости вытягивания диаметр выращиваемого кристалла обратно пропорционален перегреву расплава.

Максимально возможная скорость вытягивания кристалла достигается тогда, когда поток тепла от расплава к границе раздела фаз полностью прекращен, то есть Q1 = 0. Это условие реализуется при сведении к минимуму градиента температуры в расплаве, то есть при T T0  = 0. В этом случае от фронта кристаллизации отводится только скрытая теплота кристаллизации, а максимально допустимая скорость вытягивания кристалла определяется выражением

fmax = (βgradTs)/(Lρs)                                 (6.8) и может достигать десятков мм/мин.

Хотя в это выражение радиус кристалла явно не входит, можно показать, что он косвенно влияет на максимальную скорость вытягивания кристалла через результирующий градиент температур посредством учета теплоизлучения с поверхности растущего кристалла [38].

Существенное влияние на процессы теплопередачи оказывает характер атмосферы в ростовой камере. При выращивании кристаллов в вакууме теплопередача осуществляется только путем излучения. В газообразной же среде основную роль в процессе теплопередачи играют конвекционные процессы. В этом случае интенсивность теплопередачи возрастает с увеличением давления газа и его теплоемкости.

Любые изменения теплового баланса на границе раздела кристалл–расплав нарушают установившиеся условия роста и приводят к изменениям диаметра выращиваемого слитка, что, как правило, сопровождается возникновением различных структурных дефектов в кристалле. Обязательным условием для выращивания совершенных монокристаллов является высокая стабильность скорости вытягивания, скоростей вращения растущего кристалла и тигля с расплавом, постоянство мощности, подводимой к источнику нагрева тигля. Для стабилизации условий роста современные установки для выращивания кристаллов оснащены автоматизированными системами поддержания температуры нагревателя, непрерывного контроля диаметра выращиваемого слитка, подъема и вращения тигля и кристалла. Наиболее перспективными управляющими системами являются цифровые микропроцессорные системы. Они поз

воляют уменьшить непосредственное участие оператора в процессе выращивания и дают возможность организовать программное управление многими этапами технологического процесса.

Процесс выращивания кристалла завершается отрывом его от расплава. Перед отрывом диаметр кристалла плавно уменьшают, создавая обратный конус, чтобы ослабить тепловой удар, приводящий к размножению дислокаций в конечной части слитка. Затем производят достаточно медленное охлаждение выращенного кристалла для предотвращения образования в материале термических напряжений и дислокаций. Для этого после отрыва монокристалл поднимают на небольшое расстояние над расплавом и производят медленное снижение температуры нагревателя.

Основными преимуществами методов вытягивания кристаллов из расплава по сравнению с методами нормальной направленной кристаллизации являются следующие.

1. Кристалл растет в свободном пространстве, не испытывая никаких механических воздействий со стороны тигля; при этом размеры растущего кристалла можно достаточно произвольно изменять в пределах, допускаемых конструкцией установки.

2. Имеется возможность визуального наблюдения за процессом роста вытягиваемого кристалла. Это позволяет сопоставлять свойства получаемых кристаллов с условиями их выращивания и производить оптимизацию технологического процесса.

3. Имеется возможность использования затравки минимального размера.

Масштабы применения метода вытягивания кристаллов из расплава можно проиллюстрировать на примере кремния. В настоящее время приборы на основе кремния составляют ∼98% всех производимых в мире

полупроводниковых приборов, а основную массу монокристаллического кремния (мировой выпуск которого превышает 2 тыс. тонн в год) выращивают методом вытягивания из расплава. Непрерывно совершенствуется технологическая аппаратура, используемая при производстве Si. В результате выращенные кристаллы достигают в диаметре 150 мм и по длине 1 м. Кристаллы указанных размеров выращиваются практически бездислокационными. Этот же метод применяют и для выращивания большинства полупроводниковых соединений, имеющих не слишком высокие давления паров своих компонентов. Например, таким способом выращивают кристаллы InSb.

Рис. 6.4. Схема выращивания монокристаллов методом зонной плавки: а — горизонтальная зонная плавка; б — вертикальная бестигельная зонная плавка (1 — затравка; 2 — выращиваемый кристалл; 3 — расплавленная зона; 4 — исходный материал; 5 — стенки герметичной камеры; 6 — индуктор; 7 — кристаллодержатель; 8 — тигель).

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты