Молекулярная  связь  (силы  Ван-дер-Ваальса) – основы материаловедения

May 8, 2013 by admin Комментировать »

Этот тип связи реализуется в чистом виде в кристаллах инертных газов. Известно, что внешняя оболочка инертных газов полностью заполнена и поэтому весьма устойчива. Устойчивость внешней оболочки из 8 электронов проявляется в том, что взаимодействие атомов инертных газов с одноименными или другими атомами чрезвычайно слабо (слабая химическая активность). Однако тот факт, что их все-таки можно превратить в жидкость или твердое тело, доказывает наличие некоторых сил притяжения между атомами; в то же время исключительно низкие температуры, необходимые для их конденсации, показывают, что эти силы чрезвычайно малы. Силы, проявляющиеся у атомов инертных газов при низких температурах, называются силами Ван-дер-Ваальса. Энер

гия притяжения, обусловленная этими силами, мала. Так, например, для криптона энергия связи ∼11.2 кДж/моль (0.116 эВ/атом) или в температурных единицах ∼100 K, что по порядку величины равно температуре

плавления кристаллов инертных газов [16].

Рассмотрим причину возникновения этих сил. Атомы с заполненными валентными оболочками имеют сферическое распределение электронного заряда и не обладают постоянным электрическим моментом. Происхождение сил Ван-дер-Ваальса обусловлено наличием у таких атомов мгновенных индуцированных дипольных моментов. Если бы среднее положение ядра атома всегда совпадало с центром сферического электронного облака, окружающего ядро, то ван-дер-ваальсово взаимодействие между атомами равнялось бы нулю, а твердое тело не могло бы образоваться. Однако электроны в атоме постоянно движутся относительно ядер, даже находясь в наинизшем энергетическом состоянии. В результате этого движения мгновенное положение центра электронного облака может не совпадать в точности с положением ядра атома. В эти моменты у атома появляется отличный от нуля электрический дипольный момент. Этот мгновенный дипольный момент создает в центре второго атома электрическое поле, которое в свою очередь наводит мгновенный дипольный момент у этого второго атома. Эти два дипольных момента взаимодействуют друг с другом, приводя к ван-дер-ваальсову взаимодействию (диполи ориентируются друг к другу противоположно заряженными концами, в результате чего происходит их электростатическое взаимодействие). Энергия этого взаимодействия выражается формулой

U = −c/r6, где c — некоторая эмпирическая константа, характеризующая силы взаимного притяжения.

На малых расстояниях между атомами с заполненными электронными оболочками проявляется действие сил отталкивания, обусловленных перекрытием их электронных облаков и электростатическим отталкиванием их ядер. Силы отталкивания на расстояниях в интервале от 0.5 A˚

до 5 A˚ становятся больше сил взаимного притяжения. Потенциал сил отталкивания описывается эмпирическим выражением U = a/r12, где a — некоторая эмпирическая константа, характеризующая силы отталкивания.8 Энергия отталкивания в этом случае обусловлена главным образом

действием принципа запрета Паули. Действительно, перекрытие запол

8Эти силы отталкивания аналогичны силам отталкивания, обсуждаемым в разделе, посвященном ионной связи. Для описания изменения сил отталкивания с расстоянием широко используется, помимо приведенной формулы, и формула U = λ exp(−r/ρ), где ρ —

размер области взаимодействия, λ — эмпирическая константа, характеризующая силу взаимодействия.

ненных электронных оболочек — это добавление электронов в уже заполненные электронные состояния, что противоречит принципу Паули. Реально перекрытие возможно только при переходе части электронов в более высокие незаполненные состояния. Это означает увеличение энергии системы, а это эквивалентно взаимному отталкиванию.

Таким образом, полную энергию межмолекулярного взаимодействия

в кристаллах инертных газов можно представить в виде

U = a/r12 − c/r6.                                     (2.6)

Следует заметить, что действие этих сил проявляется всегда, безотносительно и независимо от других сил. Для ван-дер-ваальсовых сил свойственно отсутствие направленности (в силу сферической симметрии распределения электронной плотности) и насыщаемости. Следствием этого является то, что инертные газы кристаллизуются подобно металлам в структуры с плотнейшей упаковкой (обычно кубическая гранецентрированная решетка с Zк = 12, иногда гексагональная Zк = 12).

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты