Свойства  дислокаций – основы материаловедения

May 14, 2013 by admin Комментировать »

1. Дислокации не могут обрываться внутри кристалла и должны либо замыкаться сами на себя, либо разветвляться на  другие  дислокации, либо выходить на поверхность кристалла. Это свойство является следствием того, что линия дислокации представляет собой кривую, вдоль которой вектор Бюргерса b остается постоянным. Для узла разветвляющихся дислокаций справедлива теорема, аналогичная теореме Кирхгофа для разветвляющихся линий токов: если все дислокации соединяются в одной точке пересечения, то сумма их векторов Бюргерса должна быть равна нулю, например, b1 + b2 + b3 = 0. Разветвляясь и снова сливаясь, дислокации образуют в кристалле плоские и пространственные сетки, определяющие мозаичную структуру кристалла.

5Обозначение векторов Бюргерса в других решетках см. в [27].

Рис. 3.9. Схема пластического скольжения, осуществляемого путем перемещения краевой дислокации.

2.                        Энергия дислокации — это энергия, которая затрачивается на искажение решетки при образовании дислокации. Она складывается из упругой энергии искажений решетки и неупругой энергии ядра дислокации.6 Оценка упругой энергии, приходящейся на одно межатомное расстояние вдоль дислокации в структуре типа алмаза, показала, что

Eуп ∼ Gb2, где G — модуль сдвига, и составляет 4–5 эВ [29]. Если учесть,

что реальная длина дислокаций превышает десятки межатомных расстояний, и учесть неупругую энергию ядра дислокации (Eнеуп  ≈ 0.1Eуп),

то ясно, что даже при температурах, близких к температуре плавления, дислокации не могут образовываться в результате тепловых флуктуаций. Таким образом, дислокации не являются равновесными дефектами.

Под действием внешних сил дислокации могут перемещаться скольжением и переползанием, при этом дислокации передвигаются как вдоль плоскостей скольжения,7 так и перпендикулярно им соответственно. Движение дислокаций связано с пластической деформацией кристалла. Экспериментальные данные показывают, что дислокации могут двигаться со скоростями от 10−9 м/с до 10−3 м/с в зависимости от материала и приложенного напряжения. Однако скорость дислокации в кристалле

не может быть больше скорости звука, так как перемещение дислокации есть перемещение волны упругой деформации.

Перемещение дислокаций в плоскости скольжения называется скольжением. Такое движение дислокаций можно в определенном смысле представить как следствие пластической деформации кристалла, связанное с коллективным перемещением атомов. В результате скольжения одной дислокации через весь кристалл происходит пластический сдвиг на одно межатомное расстояние. Однако в каждый данный момент сдвиг происходит не по всей плоскости скольжения одновременно, а путем 6В области радиусом в несколько межатомных расстояний (≈5–10 A˚ ), называемой ядром дислокации, искажения решетки настолько велики, что не могут быть описаны в рамках

теории упругости.

7Плоскость скольжения для простейшего случая прямолинейной дислокации определяется как плоскость, в которой лежат вектор Бюргерса дислокации и линия дислокации.

последовательного перемещения атомов, находящихся у линии дислокации. Так, например, при движении краевой дислокации по плоскости скольжения (рис. 3.9) разрываются и пересоединяются связи между атомами, лежащими у линии дислокации, и при этом эти атомы совершают небольшие перемещения. В результате лишняя полуплоскость, занимавшая определенное положение в кристаллической решетке, соединяется с атомной плоскостью, находящейся под плоскостью скольжения, а соседняя атомная плоскость становится теперь лишней полуплоскостью. Таким образом, поскольку скольжение происходит путем последовательного перемещения атомов на небольшие расстояния, то для движения дислокаций в плоскости скольжения достаточно внешних напряжений намного меньших, чем напряжения, необходимые для пластической деформации совершенного кристалла без дислокаций.

Плавное движение возможно и для винтовой дислокации. Однако все плоскости, которые содержат винтовую дислокацию, содержат и вектор Бюргерса, поэтому винтовая дислокация, в отличие от краевой, может скользить в любом направлении. Следовательно, все плоскости, содержащие винтовую дислокацию, являются плоскостями плавного скольжения.

Переползание дислокаций происходит, как правило, перпендикулярно плоскости ее скольжения и осуществляется или присоединением вакансий (приток вакансий), или присоединением атомов (приток междоузельных атомов) к краю полуплоскости, при этом полуплоскость смещается на одно межатомное расстояние (рис. 3.10).8 На рис. 3.10 представлена краевая дислокация, линия дислокации которой переходит с одной плоскости скольжения на другую, расположенную на одно межплоскостное расстояние выше. Когда вакансия подходит к ступеньке, последняя смещается на одно межплоскостное расстояние, а сама вакансия исчезает. Аналогично поглощаются и междоузельные атомы. Смещение дислокации происходит в противоположных направлениях при поглощении вакансии или междоузельного атома. Оба процесса требуют диффузионного перемещения вакансий или междоузельных атомов к дислокации. Такое движение, носящее диффузионный характер, является результатом стремления системы к уменьшению свободной энергии за счет уменьшения упругой энергии решетки (см. п. 7). Наличие незаполненных (ненасыщенных) связей у атомов полуплоскости облегчает отрыв атомов и вакансий от дислокации или присоединение междоузельных атомов и вакансий к дислокации. Так как скорость диффузии быстро уменьшается с понижением температуры (см. гл. 8), то переползание (в отличие

8Обратный процесс — испускание точечных дефектов краевой дислокацией — является основным источником термодинамически равновесных точечных дефектов.

Рис. 3.10. Схема переползания краевой дислокации при поглощении вакансии. Буквой A обозначена ступенька, к которой присоединяется вакансия.

от скольжения) происходит с заметной скоростью только при достаточно высоких температурах.

Рассмотренный механизм переползания дислокации применим к любой дислокации, содержащей краевую компоненту. Однако винтовая дислокация не имеет «лишней» полуплоскости, поэтому переползание для винтовой дислокации в общепринятом смысле невозможно. Тем не менее, если линия винтовой дислокации скручивается в спираль, то такая спираль имеет краевую компоненту и, следовательно, получает возможность переползать. Переползание в этом случае вызывает расширение спирали в радиальном направлении. Таким образом, переползание винтовых дислокаций превращает их в геликоидальные (изогнутые по цилиндрической спирали с осью вдоль вектора Бюргерса).

Так как поля упругих напряжений вокруг отдельных дислокаций могут перекрываться, то дислокации могут  взаимодействовать друг с другом (притягиваться, отталкиваться), если это взаимодействие приводит к уменьшению упругой энергии кристалла. Так, если сумма энергий двух дислокаций больше (меньше) энергии дислокации, образующейся при слиянии этих дислокаций в одну, то эти дислокации будут притягиваться (отталкиваться) и объединяться (распадаться) в одну (на две). Например, при сближении двух дислокаций, расположенных в одной плоскости скольжения, с одинаковыми, но противоположно направленными векторами Бюргерса сжатие и растяжение кристалла по обе стороны от плоскости скольжения взаимно компенсируются, а при сближении двух дислокаций с одинаково направленными векторами Бюргерса — увеличивается. Поэтому параллельные винтовые и параллельные краевые дислокации, лежащие в общей плоскости или в одной плоско

сти скольжения, взаимодействуют так же, как заряженные нити: разноименные притягиваются, а одноименные отталкиваются с силой, обратно пропорциональной расстоянию. В общем случае взаимодействие дислокаций носит более сложный характер, зависящий от взаимной ориентации векторов Бюргерса дислокаций, однако обычно действует упрощенное правило: две дислокации притягиваются, если их вектора Бюргерса составляют тупой угол, и отталкиваются, — если острый.

3.                        Число различных типов дислокаций в реальных кристаллах конечно. Каждая решетка Браве имеет свой, присущий только ей, набор возможных дислокаций с определенными векторами Бюргерса. Основная причина появления этого свойства заключается в том, что в общем случае вектор Бюргерса — это векторная сумма векторов трансляций решетки, взятых с целочисленными коэффициентами. Поэтому величина и направление возможных b ограничены рядом дискретных значений, определяемых структурой решетки. С другой стороны, как было показано в п. 2, упругая энергия искажений решетки при наличии дислокаций пропорциональна квадрату вектора Бюргерса. Поэтому для каждого типа кристаллической решетки существуют дислокации с наименьшими векторами Бюргерса, которые обладают наименьшей энергией, наиболее энергетически устойчивы против расщепления и наиболее подвижны. Как правило, такими дислокациями являются полные дислокации, то есть дислокации, вектор Бюргерса которых равен вектору трансляции решетки. Так, в кристаллах с о.ц.к. решеткой минимальной энергией обладают дислокации с векторами Бюргерса (a/2)<111>, в кристаллах с г.ц.к. решеткой — с векторами Бюргерса (a/2)<110>. Эти дислокации наиболее распространены в названных решетках. В качестве примера рассмотрим дислокации в структуре типа алмаза.

В структуре типа алмаза энергетически наиболее выгодны дислокации с вектором Бюргерса (a/2)<110>. Любое сложное перемещение в решетке можно рассматривать как сумму последовательных трансляций в направлениях <110>. Поэтому линии простых дислокаций должны быть направлены вдоль какого-либо из направлений <110>. В решетке алмаза возможны 9 различных типов дислокаций, из которых три являются простыми, а остальные — сложными (см. табл. 3.1). Покажем это.

Рассмотрим тетраэдр, образованный направлениями <110> и вписанный в куб (рис. 3.11). Вектор Бюргерса (a/2)<110> направлен вдоль ребра BC тетраэдра. Каждое ребро такого тетраэдра представляет собой линию простой дислокации, а суммирование двух ребер тетраэдра приводит к образованию линии сложной дислокации из линий двух простых дислокаций. Сложные дислокации возникают, когда линия дислокации

Рис. 3.11. Тетраэдр с ребрами вдоль направлений <110>.

последовательно меняет свою ориентировку от одного из направлений

<110> к другому и в общем случае оказывается непараллельной ни одному из направлений типа <110>. Различные комбинации ребер при суммировании дают весь возможный набор сложных дислокаций.

Из табл. 3.1 следует, что к простым дислокациям в структуре типа алмаза относятся: винтовая (линия дислокации совпадает с вектором Бюргерса) (рис. 3.12,а), краевая с плоскостью скольжения {100} (линия дислокации перпендикулярна вектору Бюргерса) (рис. 3.12,в) и 60-градусная дислокация с плоскостью скольжения {111} (вектор Бюргерса образует угол 60◦ с линией дислокации) (рис. 3.12,б). Остальные дислокации — сложные.

Дислокации в структурах типа сфалерита, NaCl, вюртцита подробно рассмотрены в [27].

4.                        Характерной особенностью краевых и 60-градусных дислокаций является то, что атомы, образующие край атомной полуплоскости, имеют ненасыщенные (оборванные) связи, то есть эти дислокации электрически активны в отличие от электрически неактивных винтовых дислокаций. Оборванные связи вносят вклад в энергию дислокаций. Однако основная часть энергии дислокации и в этом случае приходится на энергию упругих искажений. По проведенным оценкам энергия одной разорванной связи составляет 0.7 эВ для германия и 1.2 эВ для кремния [17], то есть в несколько раз меньше, чем упругая энергия, приходящаяся на одну атомную плоскость, пересекаемую дислокацией.

5.                        Взаимодействие дислокаций с точечными дефектами.

Стремление к уменьшению свободной энергии кристалла вызывает эффективное взаимодействие дислокаций с точечными дефектами и прежде всего с примесными атомами. В результате этого взаимодействия атомы примеси распределяются в решетке неравномерно, как правило, группируясь вблизи дислокаций и образуя так называемые атмосферы Коттрелла.

Рис.  3.12.  Простые  дислокации  в  решетке  алмаза:  а  —  винтовая;  б  —  60-градусная с плоскостью скольжения {111}; в — краевая с оборванными связями и с

плоскостью скольжения {100}. a a — линия дислокации; b — вектор Бюргерса.

Таблица 3.1. Возможные типы дислокаций в решетке алмаза [27].

NN

Линия

дислокации

Символ

линии дислокации

Угол между

линией дислокации  и вектором Бюргерса

Плоскость

скольжения

Число

оборванных связей

Простые

1

BC

<110>

0◦

0

2

AB, AC, DB, DC

<110>

60◦

{111}

1.41

3

AD

<110>

90◦

{100}

2.83 или 0

Сложные

4

BC + AC, BC + BA

BD + BC, DC + BC

<211>

30◦

{111}

0.82

5

AC + AB, DC + BC

<211>

90◦

{111}

1.63

6

AD + BD, DA + BA

AD + CD, DA + CA

<211>

73◦13’

{311}

2.45 или 0.82

7

AB + DB, AC + DC

<211>

54◦ 44’

{110}

1.63 или 0

8

AC + DB, AB + DC

<100>

90◦

{110}

2.0 или 0

9a

AD + BC, AD + CB

<100>

45◦

{100}

2.0 или 0

AC + BD, AB + CD

<100>

45◦

{100}

2.0 или 0

Различают три типа взаимодействия дислокаций с точечными дефектами: упругое взаимодействие I рода (размерное); упругое взаимодействие II рода (взаимодействие по модулю упругости); электрическое взаимодействие (кулоновское).

1). Упругое взаимодействие I рода обусловлено полями упругих напряжений вокруг дислокаций и вокруг примесного атома. Знак напряжений вокруг примесного атома зависит от соотношения радиусов атомов основного вещества r0  и примеси r. В случае примеси замещения при

r = r r0  > 0 возникают упругие напряжения радиального сжатия,

при ∆r < 0 — растяжения. В случае примеси внедрения напряжения

всегда сжимающие. Атом, создающий растягивающие напряжения, будет стремиться в сжатую область вокруг дислокации, в то время как атом, создающий сжимающие напряжения, — в растянутую. Взаимодействие этого типа связано с краевыми дислокациями. Упругая энергия EI такого взаимодействия равна работе, совершаемой упругими силами при замене атома основного вещества примесным атомом: EI ∼ Gbr3∆r sin θ/r0R, где

G — модуль сдвига, R и sin θ — сферические координаты атома примеси

(краевая дислокация находится в начале координат) [17]. Знак отношения ∆r/r0 показывает, куда стремится атом примеси: в растянутую или сжатую область решетки. Характерная энергия этого взаимодействия в полупроводниках составляет ≈0.5 эВ.

Эту же работу надо затратить и для отрыва примесного атома от дислокации. Расчеты показывают, что уже примерно на 3–5 межатомных

расстояниях энергия EI  ≈  kT . Это значит, что дальше этого расстояния от дислокации «облако» атомов примеси (атмосфера Коттрелла) рассасывается тепловым движением. Чем сильнее тепловое движение, тем меньше концентрация атомов примеси в облаке.

2). Упругое взаимодействие II рода обусловлено тем, что примесный атом или вакансия представляют собой малые области с упругими постоянными, иными, чем у матрицы. В этом случае энергия взаимодействия EII  между дислокацией и точечным дефектом пропорциональна:

EII  ∼ (∆G)b2/R2 , где R — расстояние от точечного дефекта до дислокации [17]. В отличие от первого взаимодействия, второе сказывается

лишь на очень малых расстояниях; по порядку величины оно составляет EII ≈ 0.2 эВ. Это взаимодействие вызывает увеличение концентрации

вакансий вокруг дислокаций.

3). Электрическое взаимодействие проявляется главным образом в полупроводниковых и ионных кристаллах. Оборванные связи дислокаций обычно действуют как акцепторы. В материале n-типа эти связи захватывают электроны и тем самым создают кулоновское взаимодействие

между дислокацией и положительно заряженными ионами. Величина такого взаимодействия Eэл  ∼ fe2/a, где f — доля свободных оборванных

связей; a — расстояние между оборванными связями вдоль линии дислокации; e — заряд электрона. Максимальное значение Eэл  при комнатной

температуре ≈0.02 эВ.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты