Атомные и ионные радиусы – основы материаловедения

June 7, 2013 by admin Комментировать »

Одной из важнейших характеристик химических элементов, участвующих в образовании химической связи, является размер атома (иона): с его увеличением прочность межатомных связей снижается. Размер атома (иона) принято определять величиной его радиуса или диаметра. Так как атом (ион) не имеет четких границ, то понятие «атомный (ионный) радиус» подразумевает, что 90–98 % электронной плотности атома (иона) заключено в сфере этого радиуса. Знание величин атомных (ионных) радиусов  позволяет оценивать межъядерные расстояния в кристаллах (то есть структуру этих кристаллов), так как для многих задач кратчайшие расстояния между ядрами атомов (ионов) можно считать суммой их атомных (ионных) радиусов, хотя такая аддитивность приближенна и выполняется не во всех случаях.

Под атомным радиусом химического элемента (об ионном радиусе см. ниже), участвующего в образовании химической связи, в общем случае договорились понимать половину равновесного межъядерного расстояния между ближайшими атомами в кристаллической решетке элемента. Это понятие, весьма простое, если рассматривать атомы (ионы) в виде жестких шаров, фактически оказывается сложным и часто не однозначным. Атомный (ионный) радиус химического элемента не является неизменной величиной, а изменяется в зависимости от ряда факторов, важнейшими из которых являются тип химической связи

и координационное число.

Если один и тот же атом (ион) в различных кристаллах образует разные типы химической связи, то у него будет несколько радиусов — ковалентный в кристалле с ковалентной связью; ионный в кристалле с ионной связью; металлический в металле; ван-дер-ваальсов в молекулярном кристалле. Влияние типа химической связи можно проследить на следующем примере. В алмазе все четыре химические связи являются ковалентными и образованы sp3-гибридами, поэтому все четыре соседа данного атома находятся на одном и

том же расстоянии от него (d = 1.54 A˚ ) и ковалентный радиус углерода в алмазе будет

равен 0.77 A˚ . В кристалле мышьяка расстояние между атомами, связанными ковалентными связями (d1 = 2.52 A˚ ), значительно меньше, чем между атомами, связанными силами Ван-дер-Ваальса (d2 = 3.12 A˚ ), поэтому у As будет ковалентный радиус, равный 1.26 A˚ , и ван-дер-ваальсов, равный 1.56 A˚ .

Очень резко изменяется атомный (ионный) радиус и при изменении координационного числа (это можно наблюдать при полиморфных превращениях элементов). Чем меньше координационное число, тем меньше степень заполнения пространства атомами (ионами) и меньше межъядерные расстояния. Увеличение же координационного числа всегда сопровождается увеличением межъядерных расстояний.

Из сказанного следует, что атомные (ионные) радиусы разных элементов, участвующих в образовании химической связи, можно сравнивать только тогда, когда они образуют кристаллы, в которых реализуется один и тот же тип химической связи, и у этих элементов в образуемых кристаллах одинаковые координационные числа.

Рассмотрим основные особенности атомных и ионных радиусов более подробно.

Под ковалентными радиусами элементов принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ковалентной связью.

Особенностью ковалентных радиусов является их постоянство в разных «ковалентных структурах» с одинаковым координационным числом Zк. Кроме того, ковалентные радиусы, как правило, аддитивно связаны друг с другом, то есть расстояние A–B равно полусумме расстояний A–A и B–B при наличии ковалентных связей и одинаковых координационных чисел во всех трех структурах.

Различают нормальный, тетраэдрический, октаэдрический, квадратичный и линейный ковалентные радиусы.

Нормальный ковалентный радиус атома отвечает случаю, когда атом образует столько ковалентных связей, сколько соответствует его месту в периодической таблице: для углерода — 2, для азота — 3 и т. д. При этом получаются разные значения нормальных радиусов в зависимости от кратности (порядка) связи (единичная связь, двойная, тройная). Если связь образуется при перекрытии гибридных электронных облаков, то говорят о тетраэдрических

(Zк = 4, sp3-гибридные орбитали), октаэдрических (Zк = 6, d2sp3-гибридные орбитали), квадратичных (Zк = 4, dsp2-гибридные орбитали), линейных (Zк = 2, sp-гибридные орбитали) ковалентных радиусах.

О ковалентных радиусах полезно знать следующее (значения величин ковалентных радиусов для ряда элементов приведены в [15, 20]).

1.  Ковалентные радиусы, в отличие от ионных, нельзя интерпретировать как радиусы атомов, имеющих сферическую форму. Ковалентные радиусы применяются только для вычисления межъядерных расстояний между атомами, объединенными ковалентными связями, и ничего не говорят о расстояниях между атомами того же типа не связанными ковалентно.

2.  Величина ковалентного радиуса определяется кратностью ковалентной связи. Тройная связь короче двойной, которая в свою очередь короче единичной, поэтому ковалентный радиус тройной связи меньше, чем ковалентный радиус двойной связи, который меньше

единичного. Следует иметь в виду, что порядок кратности связи не обязательно должен быть целым числом. Он может быть и дробным, если связь носит резонансный характер (молекула бензола, соединение Mg2 Sn, см. ниже). В этом случае ковалентный радиус имеет промежуточное значение между значениями, соответствующими целым порядкам кратности связи.

3.  Если связь носит смешанный ковалентно-ионный характер, но с высокой степенью ковалентной составляющей связи,  то можно вводить понятие ковалентного радиуса,  но нельзя пренебрегать влиянием ионной составляющей связи на его величину. В некоторых случаях это влияние может приводить к значительному уменьшению ковалентного радиуса, иногда до 0.1 A˚ . К сожалению, попытки предсказать величину этого эффекта в различных

случаях пока не увенчались успехом.

4.  Величина ковалентного радиуса зависит от типа гибридных орбиталей, которые принимают участие в образовании ковалентной связи.

Ионные радиусы, естественно, не могут быть определены как полусумма расстояний между ядрами ближайших ионов, так как, как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов может несколько отличаться от сферической. Тем не менее для реальных ионных кристаллов под ионным радиусом принято понимать радиус шара, которым аппроксимируется ион.

Ионные радиусы используются для приближенных оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояния между ближайшими катионом и анионом равно сумме их ионных радиусов. Типичная погрешность определения межъядерных расстояний через ионные радиусы в таких кристаллах составляет величину ≈0.01 A˚ .

Существует несколько систем ионных радиусов, отличающихся значениями ионных радиусов индивидуальных ионов, но приводящих  к  примерно  одинаковым  межъядерным расстояниям.  Первая  работа  по  определению  ионных  радиусов  была  проведена В. М. Гольдшмитом в 20-х годах XX века. В ней автор использовал, с одной стороны, межъядерные расстояния в ионных кристаллах, измеренные методами рентгеновского структурного анализа, а, с другой стороны, — значения ионных радиусов F− и O2− , определенные

методом рефрактометрии. Большинство других систем также опирается на определенные дифракционными методами межъядерные расстояния в кристаллах и на некоторые «реперные» значения ионного радиуса конкретного иона. В наиболее широко известной системе

Полинга этим реперным значением является ионный радиус пероксид-иона O2− , равный

1.40                      A˚ . Эта величина для O2− хорошо согласуется с теоретическими расчетами. В системе Г. Б. Бокия и Н. В. Белова, считающейся одной из наиболее надежных, ионный радиус O2− принимается равным 1.36 A˚ .

В 70–80-х годах были сделаны попытки прямого определения радиусов ионов путем измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Оказалось, что этот прямой метод приводит к завышенным значениям ионных радиусов катионов и к заниженным значениям ионных радиусов анионов. Кроме того, оказалось, что значения ионных радиусов, определенные прямым способом, нельзя переносить от одного соединения к другому, а отклонения от аддитивности слишком велики. Поэтому такие ионные радиусы, не используются для предсказания межъядерных расстояний.

О ионных радиусов полезно знать следующее (в таблицах, приведенных ниже, даны величины ионных радиусов по Бокию и Белову).

1.  Ионный радиус для ионов одного и того же элемента меняется в зависимости от его заряда, а для одного и того же иона зависит от координационного числа. В зависимости от координационного числа различают тетраэдрический и октаэдрический ионные радиусы.

2.  Внутри одного вертикального ряда, точнее внутри одной группы, периодической

системы радиусы ионов с одинаковым зарядом возрастают с увеличением атомного номера элемента, поскольку растет число занятых электронами оболочек, а значит и размер иона.

Ион

Li+

Na+

K+

Rb+

Cs+

Z

3

11

19

37

55

Радиус, A˚

0.70

1.00

1.33

1.52

1.70

3.  Для положительно заряженных ионов атомов из одного периода ионные радиусы быстро уменьшаются с увеличением заряда. Быстрое уменьшение объясняется действием в одну сторону двух основных факторов: сильное притяжение «своих» электронов катионом, заряд которого увеличивается с увеличением атомного номера; увеличение силы взаимодействия между катионом и окружающими его анионами с увеличением заряда катиона.

Ион

Au+

Hg2+

Tl3+

Pb4+

Радиус, A˚

1.37

1.12

1.05

0.76

4.  Для отрицательно заряженных ионов атомов из одного периода ионные радиусы увеличиваются с увеличением отрицательного заряда. Два фактора, о которых шла речь в предыдущем пункте, в этом случае действуют в противоположные стороны, причем преобладает первый фактор (увеличение отрицательного заряда аниона сопровождается возрастанием его ионного радиуса), поэтому увеличение ионных радиусов с ростом отрицательного заряда происходит существенно медленнее, чем уменьшение в предыдущем случае.

Ион

F−

O2−

Cl−

S2−

Радиус, A˚

1.33

1.36

1.81

1.82

5.  Для одного и того же  элемента, то есть при одинаковой исходной электронной конфигурации, радиус катиона меньше, чем аниона. Это обусловлено уменьшением притяжения внешних «добавочных» электронов к ядру аниона и увеличением эффекта экранирования за счет внутренних электронов (у катиона недостаток электронов, а у аниона избыток).

Ион

Pb4−

Pb

Pb2+

Pb4+

Радиус, A˚

2.15

1.74

1.18

0.84

6.  Размеры ионов с одинаковым зарядом следуют периодичности таблицы Менделеева. Однако величина ионного радиуса не пропорциональна заряду ядра Z, что обусловлено сильным притяжением электронов ядром. Кроме того, исключение из периодической зависимости представляют лантаноиды и актиноиды, в рядах которых радиусы атомов и ионов с одинаковым зарядом не растут, а уменьшаются с ростом атомного номера (так называемые лантаноидное сжатие и актиноидное сжатие).11

11Лантаноидное сжатие и актиноидное сжатие обусловлены тем, что у лантаноидов и актиноидов добавляющиеся при увеличении атомного номера электроны заполняют внутренние dи f -оболочки с главным квантовым числом меньшим, чем главное квантовое число данного периода. При этом согласно квантовомеханическим расчетам в dи особенно в f состояниях электрон находится гораздо ближе к ядру, чем в sи pсостояниях данного периода с большим квантовым числом, поэтому dи f -электроны размещаются во внутренних областях атома, хотя заполнение этих состояний электронами (речь идет об электронных уровнях в энергетическом пространстве) происходит по другому.

Металлические радиусы считаются равными половине кратчайшего расстояния между ядрами атомов в кристаллизующейся структуре элемента-металла. Они зависят от координационного числа. Если принять металлический радиус какого-либо элемента при Zк = 12 за единицу, то при Zк = 8, 6 и 4 металлические радиусы того же элемента будут соответственно равны 0.98; 0.96; 0.88. Металлические радиусы обладают свойством аддитивности. Знание их величин позволяет приближенно предсказывать параметры кристаллических решеток интерметаллических соединений.

Для атомных радиусов металлов характерны следующие особенности (данные о величинах атомных радиусов металлов можно найти в [15, 20]).

1.  Металлические атомные радиусы переходных металлов, как правило, меньше, чем металлические атомные радиусы непереходных металлов, что отражает большую прочность связи в металлах переходных элементов. Эта особенность обусловлена тем, что металлы переходных групп и ближайшие к ним в периодической системе металлы имеют электронные d-оболочки, а электроны в d-состояниях могут принимать участие в образовании химической связи. Упрочнение связи может быть связано отчасти с появлением ковалентной составляющей связи и отчасти с ван-дер-ваальсовым взаимодействием ионных остовов. В кристаллах железа и вольфрама, например, электроны в d-состояниях вносят существенный вклад в энергию связи.

2.  В пределах одной вертикальной группы по мере продвижения сверху вниз атомные радиусы металлов возрастают, что обусловлено последовательным увеличением числа электронов (растет число занятых электронами оболочек).

Элемент

Li

Na

K

Rb

Cs

Радиус, A˚

1.52

1.85

2.31

2.46

2.62

3.  В пределах одного периода, точнее начиная с щелочного металла до середины группы переходных металлов, в направлении слева направо атомные металлические радиусы уменьшаются. В той же последовательности возрастает электрический заряд атомного ядра и происходит увеличение числа электронов, находящихся на валентной оболочке. При возрастании числа связывающих электронов, приходящихся на один атом, металлическая связь упрочняется, и вместе с тем из-за увеличения заряда ядра  усиливается притяжение остовных (внутренних) электронов ядром, поэтому величина металлического атомного радиуса уменьшается.

Элемент

K

Ca

Sc

Ti

V

Cr

Радиус, A˚

2.31

1.96

1.60

1.46

1.31

1.25

4.  Переходные металлы VII и VIII групп из одного периода в первом приближении имеют почти одинаковые металлические радиусы. По-видимому, когда речь идет об элементах, имеющих 5 и большее число d-электронов, увеличение заряда ядра и связанные с этим эффекты притяжения остовных электронов, ведущие к уменьшению атомного металлического радиуса, компенсируются эффектами, обусловленными увеличивающимся в атоме (ионе) числом электронов, не участвующих в образовании металлической связи, и ведущими к увеличению металлического радиуса (растет число занятых электронами состояний).

Элемент

Fe

Co

Ni

Радиус, A˚

1.23

1.25

1.24

5.  Увеличение радиусов (см. п. 2) у переходных элементов, которое имеет место при переходе от четвертого к пятому периоду, не наблюдается у переходных элементов при

переходе от пятого к шестому периоду; металлические атомные радиусы соответствующих (сравнение идет по вертикали) элементов в этих двух последних периодах почти одинаковы. По-видимому, это связано с тем, что у элементов, расположенных между ними, достраивается сравнительно глубоко расположенная f -оболочка, поэтому увеличение заряда ядра и связанные с этим эффекты притяжения оказываются более существенными, чем эффекты, связанные с увеличивающимся числом электронов (лантаноидное сжатие).

Элемент из 4 периода

Cr

Fe

Ni

Cu

Радиус, A˚

1.28

1.27

1.24

1.28

Элемент из 5 периода

Mo

Ru

Pd

Ag

Радиус, A˚

1.40

1.33

1.37

1.44

Элемент из 6 периода

W

Os

Pt

Au

Радиус, A˚

1.41

1.35

1.38

1.44

6.  Обычно металлические радиусы много больше, чем ионные радиусы, однако не столь значительно отличаются от ковалентных радиусов тех же элементов, хотя и все без исключения больше ковалентных. Большая разница в величинах металлических атомных и ионных радиусов одних и тех же элементов объясняется тем, что связь, обязанная своим происхождением почти свободным электронам проводимости, не является сильной (отсюда наблюдаемые относительно большие межатомные расстояния в решетке металлов). Существенно меньшую разницу в величинах металлических и ковалентных радиусов одних и тех же элементов можно объяснить, если рассматривать металлическую связь как некоторую особенную «резонансную» ковалентную связь [15, 20].

Под ван-дер-ваальсовым радиусом принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ван-дер-ваальсовой связью. Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, как следует из определения, ван-дер-ваальсовым атомным радиусом можно считать половину межъядерного расстояния между ближайшими одноименными атомами, связанными ван-дер-ваальсовой связью и принадлежащими разным молекулам (например, в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому вандер-ваальсовы атомные радиусы характеризуют минимально допустимые контакты атомов, принадлежащих разным молекулам. Данные о величинах ван-дер-ваальсовых атомных радиусов для некоторых атомов можно найти в [15, 20]).

Знание ван-дер-ваальсовых атомных радиусов позволяет определять форму молекул, их упаковку в молекулярных кристаллах. Ван-дер-ваальсовы радиусы много больше всех перечисленных выше радиусов тех же самых элементов, что объясняется слабостью вандер-ваальсовых сил.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты