Диффузия Li в Ge – основы материаловедения

June 8, 2013 by admin Комментировать »

Одним из методов определения зарядового состояния быстро диффундирующих примесных ионов является наблюдение их дрейфа в электрическом поле. Впервые такой эксперимент был проведен на литии в германии. Суть его состоит в следующем (рис. 8.8). Диффундирующая примесь наносится на поверхность германия p-типа проводимости кратковременным вплавлением ее в поверхностный слой. При этом реализуется случай «точечного» источника с неограниченным запасом примесных атомов — капля, вплавленная в кристалл и имеющая радиус много меньший характерных расстояний диффузии. Далее образец прогревается при заданной температуре T время t1 для формирования четкого фронта диффузии, представляющего собой полусферу радиуса r1. Затем образец охлаждается до комнатной температуры, а исходный источник примеси удаляется шлифовкой и специальным травлением. После травления на поверхности образца остается лунка, концентрично с которой находится диффузионная область, обогащенная литием, которая имеет проводимость n-типа. Затем определяется положение p n-перехода, располагающегося на поверхности полусферы радиуса r1, с которой в дальнейшем пойдет диффузия. Граница p n-перехода выявляется, например, химическим окрашиванием в специальном красителе2 или электрическим осаждением титаната бария. Затем образец помещается в постоянное электрическое поле (напряженностью 1–10 В/см), а диффузию проводят при той же температуре T , что и первый раз. Ток, который пропускается через образец (1–10 A), одновременно используется для его нагрева. Ввиду отсутствия источника дальнейшая диффузия примеси происходит аналогично рассмотренному выше случаю диффузии из ограниченного источника (уравнение (8.19)), то есть радиус полусферы увеличивается за счет обеднения областей прилегающих к бывшему источнику. Одновременно все диффундирующие ионы в соответствии со своим знаком заряда q будут дрейфовать в электрическом поле со скоростью Vдр. = µE, где µ — эффективная подвижность ионов, связанная с их коэффициентом диффузии соотношением Эйнштейна µ = (q/kT )D. Таким образом, центр полусферы после соответствующего прогрева переместится в новое

2 Если образец, в котором сформирован p n-переход, погрузить в специальный краситель и выдержать на свету несколько минуты, то область p-типа проводимости будет иметь цвет, отличный от цвета n-типа проводимости.

Рис. 8.8. Схема метода определения заряда диффундирующих ионов (x — смещение в электрическом поле; r1 (без поля) и r2 (с полем) — радиусы p n-переходов после прогрева).

положение, отстоящее от исходного на расстояние x = µEt.

В случае лития смещение пятна в электрическом поле оказалось направленным от «+» к «−» (от анода к катоду), то есть полностью подтвердило знак заряда ионизованного донора Li+. Кроме того, опыты с литием прямо доказали справедливость соотношения Эйнштейна для процессов диффузии и дрейфа ионов, а не только для электронов и дырок.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты