Химические связи в полупроводниках, производных от ANB8−N

June 5, 2013 by admin Комментировать »

Для развития прикладной полупроводниковой электроники требуется получение полупроводниковых материалов с заданными свойствами. В рамках обычного эмпирического подхода с этой целью синтезируют большое число кристаллов разного состава, изучают их свойства и находят тот

материал, который обладал бы заданными параметрами. В такой ситуации, естественно, весьма желательно сформулировать некоторые критерии, которые давали бы возможность, не затрачивая больших средств и времени на изготовление огромного числа разных кристаллов, заранее исключить из рассмотрения те материалы, которые не являются полупроводниками или не обладают требуемыми свойствами. Проще всего решения этой проблемы можно достичь используя теорию химической связи. Несмотря на то, что значения кристаллохимических параметров этой теории, как правило, не являются строго определенными, знание основных закономерностей изменения физико-химических свойств известных полупроводников с изменением этих параметров позволяет в ряде случаев синтезировать аналоги известных материалов с заранее прогнозируемыми свойствами.

Анализируя химическую связь в полупроводниках, Музер  и  Пирсон [25] ввели понятие о некоторой специфической «полупроводниковой связи»,18 основной составной частью которой является ковалентная связь, обеспечивающая полупроводниковые свойства кристаллов. Они пришли к выводу, что для образования этой связи в элементарных полупроводниках необходимо наличие полностью заполненных sи p-орбиталей в валентных оболочках всех атомов. В полупроводниковых бинарных соединениях достаточно, чтобы хотя бы один из двух связанных атомов обладал заполненными sи p-валентными орбиталями. Присутствие пустых «металлических» орбиталей у другого атома, входящего в состав соединения, не уничтожает полупроводниковых свойств, если эти атомы не связаны друг с другом. Связи в полупроводниках должны образовывать одно-, двухили трехмерную решетку, простирающуюся на весь кристалл.

Принимая во внимание выводы Музера и Пирсона и учитывая накопленный при исследовании полупроводников опыт, установили, что большинство бинарных полупроводников подчиняются следующим эмпирическим закономерностям.

1. Полупроводник должен содержать в своем составе атом элемента, принадлежащего к IVA–VIIA подгруппам периодической системы. Поясним это правило.

Это правило эквивалентно требованию присутствия в полупроводниковом соединении атомов B, у которых валентная оболочка будет заполняться полностью и которые, как правило, имеют большую электроотрицательность, чем электроотрицательность атомов A. При этом предполагается, что у атомов A возможно наличие свободных «металлических»

18На самом деле химические связи в полупроводниках, конечно же, смешанные.

орбиталей. Принцип полного заполнения валентной зоны соединения не нарушается, если атомы A непосредственно не связаны друг с другом. Однако наличие свободных «металлических» орбиталей может вызвать образование резонансной связи (см. ниже). В этом случае число ближайших соседей, с которыми образуется химическая связь, у атомов B будет превышать их валентность.

2. В полупроводнике для валентных электронов выполняется соотношение, называемое правилом Музера-Пирсона:

ne/NB + NBB = 8,                                  (2.10)

где ne — суммарное число валентных электронов на атом или молекулу (число валентных электронов, участвующих в образовании связи), NB — число атомов B (анионов из IVA–VIIA группы) в молекуле, NBB — число связей, образуемых B атомами между собой. Определение NBB требует знания кристаллической структуры соединения.

3. Разность электроотрицательностей, входящих в состав полупроводниковых соединений элементов, должна быть менее 0.8–1. Это требование связано с тем, что степень ионности связи пропорциональна разности электроотрицательностей. Увеличение степени ионности связи приводит, как мы выяснили ранее, к увеличению Eg и к уменьшению µn,p, то есть переходу к диэлектрикам.

4. Большинство полупроводников подчиняются еще и правилу нормальной валентности: для бинарных соединений AKBL

a    b

Ka = (8 − L)b,                                       (2.11)

где K и L — валентности элементов A и B, соответственно, в соединении AaBb, а a и b — числа, определяющие стехиометрический состав соединения.

Легко проверить, что эти правила выполняются во всех рассмотренных выше полупроводниковых соединениях ANB8−N. Например,

GaAs (AIIIBV): ne = 8; NB = 1; NBB = 0; ne/NB + NBB = 8

CdTe (AIIBVI): ne = 8; NB = 1; NBB = 0; ne/NB + NBB = 8

CuBr (AIBVII): ne = 8; NB = 1; NBB = 0; ne/NB + NBB = 8

Приведенные простые эмпирические закономерности оказались полезными с точки зрения прогнозирования полупроводниковых производных от известных полупроводниковых соединений, в частности большой группы полупроводников сложного состава (твердые растворы, бинарные,

тройные и др. соединения), производной от ANB8−N.

Поскольку далее мы будем рассматривать не только соединения, производные от ANB8−N, но и твердые растворы, то необходимо дать определения понятиям «соединение» и «твердый раствор».

Все однофазные (см. гл. 4) твердые кристаллические тела представляют собой либо соединения, либо твердые растворы.

1. Соединения.

Соединение определяется стехиометрической формулой, с помощью которой задается строгое соотношение между числами атомов элементов, входящих в состав соединения. Также отличительным признаком соединения является наличие у него определенной кристаллической решетки, отличной от решеток элементов, из которых оно образовано. Например, соединение InSb имеет кубическую решетку, а элементы, из которых оно образовано имеют: In — тетрагональную решетку, а Sb — ромбоэдрическую. Для соединения характерно строгое расположение атомов, из которых оно состоит, в элементарной ячейке. Например,  кристаллическая решетка InSb (структурный  тип сфалерит) состоит из двух г.ц.к.-подрешеток, сдвинутых относительно друг друга на 1/4 объемной диагонали, каждая из которых заполняется своим сортом атомов: одна — In, другая — Sb.

2. Твердые растворы.

Понятие «твердый раствор» было введено по аналогии с жидкими растворами, так как в твердых растворах для атомов растворяемого вещества характерно случайное расположение атомов в решетке растворителя, как в жидкостях, а не строго определенное, как в соединениях. Взаимодействующие вещества (растворитель и растворяемое вещество) могут иметь как неограниченную, так и ограниченную растворимость друг в друге с разной степенью этого ограничения и разной температурной зависимостью предела растворимости (см. гл. 4 и гл. 8). Таким образом, твердые растворы существуют не при определенном численном соотношении своих компонентов, а в интервале концентраций, величина которого определяется пределом растворимости. Кроме того, при образовании твердого раствора тип кристаллической решетки растворителя сохраняется, хотя постоянная решетки изменяется.

Таким образом, твердые растворы — это твердотельные двухили многокомпонентные однородные системы переменного состава (например, типа  AxB1−x),  в  которых  атомы  компонентов,  смешиваясь  в  различных соотношениях (0 ≤ x ≤ 1), образуют общую кристаллическую решетку, характерную для одного из компонентов.

На основе растворителя — химического элемента — возможны два типа твердых растворов:

Рис. 2.22. Типы твердых растворов: а — растворитель; б — раствор замещения; в — раствор внедрения; г — растворитель; д — раствор замещения; е — раствор вычитания. а, б, в — растворитель–химический элемент, г, д, е — растворитель–соединение AB. ◦ — атомы A, • — атомы B,    — атомы C, O — незанятые

узлы.

а) Растворы замещения:  атомы растворяемого элемента занимают позиции атомов растворителя в узлах решетки, то есть замещают их (рис. 2.22,б). Примером может служить твердый раствор Ge–Si.

б) Растворы внедрения: атомы растворяемого элемента занимают междоузельные позиции в решетке растворителя, внедряясь между атомами последнего (рис. 2.22,в). Примеры: Ge(Li), Si(Li).

Если твердые растворы образуются на основе соединений, то кроме растворов замещения (рис. 2.22,д) и внедрения образуются еще и

в) Растворы вычитания: один из элементов, образующих соединение, присутствует в количестве, превышающем формульное, но при этом занимает в решетке соединения присущие ему позиции, а соответствующая часть позиций другого элемента остается вакантной (рис. 2.22,е). Например, Ni49Sb51, In2Te3.

Обратимся вновь к вопросу о полупроводниковых производных от ANB8−N с алмазоподобной структурой. Заметим, что помимо четырех общих закономерностей для бинарных полупроводников, для алмазоподобных выполняется следующее правило: в них на каждый атом в среднем приходится четыре валентных электрона и химические связи строятся на sp3-гибридных орбиталях. Поскольку правило Музера-Пирсона определяется суммарным числом валентных электронов и кристаллической структурой вещества, то это дает возможность получать новые вещества, обладающие полупроводниковыми свойствами, из полупроводниковых соединений AB, замещая часть атомов A или (и) B элементами из той же подгруппы с учетом остальных правил для сохранения полупроводниковых свойств. Практически это замещение осуществляется следующим образом. Возьмем два полупроводниковых соединения, например, с разными металлическими компонентами AC и BC, в которых элементы A и B находятся в одной и той же подгруппе периодической системы. «Смешивание» этих двух соединений приведет к образованию твердого раствора A1−xBxC в области его существования. Область существования — это часть фазовой диаграммы (см. гл. 4), в которой образуется непрерывный ряд твердых растворов и которая имеет тем большую протяженность, чем меньше различия между периодами решеток смешиваемых соединений и чем меньше различия между степенями ионности химических связей, то есть чем меньше различие между разностями электроотрицательностей в смешиваемых соединениях.

Примерами твердых растворов с замещением компонента A могут быть:

AlAs + GaAs → AlxGa1−xAs для соединений A

III

BV,

CdTe + HgTe → CdxHg1−xTe для соединений A

BVI.

Выполнение закономерностей, характерных для полупроводников, в том числе и правила Музера-Пирсона, и сохранение алмазоподобной структуры для результирующих твердых  растворов  очевидно, так как в них, как и в исходных соединениях, реализуются смешанные ковалентно-ионные sp3-гибридные связи.

Как показывает опыт, при «смешении» полупроводниковых соединений с одинаковыми атомами A и разными атомами B, расположенными в одной и той же подгруппе периодической системы, также образуются полупроводниковые твердые растворы. Например, GaSb1−As(GaSb+GaAs) и CdSe1−Tey  (CdSe+CdTe).  При  таком  замещении также очевидно выполнение всех закономерностей, приведенных выше, и сохранение алмазоподобной структуры.

Возможно одновременное замещение сразу двух компонент соединения атомами из соответствующих групп периодической системы с образованием четверного твердого раствора. Например, (GaAs)1−x(InP)(GaAs+InP).

Практическая важность получения подобных материалов для полупроводниковой электроники заключается в возможности, как правило, монотонного изменения за счет изменения состава ширины запрещенной зоны Eg от максимальной до минимальной величин, определяемых шириной запрещенных зон смешиваемых соединений (рис. 2.23). Таким образом, можно получить ряд кристаллов с непрерывно меняющейся Eg

Рис. 2.23. Зависимость  ширины запрещенной зоны Eg и параметра решетки от состава твердого раствора In1−GaSb.

и даже кристаллы, в которых Eg меняется от точки к точке. Период кристаллической решетки обычно линейно зависит от состава (концентрации растворенного компонента). Такая зависимость называется правилом Вегарда. Концентрационная зависимости подвижности носителей, времени их жизни, интенсивности излучательной рекомбинации и оптического поглощения в твердых растворах прямозонных полупроводниковых материалов описываются плавными кривыми между значениями, характерными для составляющих их компонентов. В твердых растворах, образованных прямозонным и непрямозонным полупроводниковыми материалами, в области составов, где происходит изменение зонной структуры, наблюдаются резкие изменения свойств.

Далее следует обратить внимание на то, что в правиле Музера-Пирсона оговаривается только число B атомов элемента, входящего в состав полупроводника, а роль A атомов сводится к добавлению электронов в суммарное число валентных электронов ne. Это позволяет предполагать, что можно посредством замены компонента A в исходном соединении получать не только полупроводниковые твердые растворы, производные

от соединений ANB8−N, но и другие бинарные, тройные и более сложные полупроводниковые соединения, но уже, возможно, со структурой, производной от алмазоподобной. В этом случае замещающие элементы выбираются из групп периодической таблицы, отличных от той, в которой расположен замещаемый атом A, однако при этом должны удовлетворяться общие закономерности образования полупроводников (см. выше).

Ниже приведены ряды соединений, получающихся из ANB8−N при горизонтальном замещении, с примерами полупроводниковых соединений

соответствующих типов.

1.                                  AIVBIV  → AII    IV

Рис. 2.24. Структура Mg2 Sn (антифлюорита).

Mg2(Si,Ge,Sn,Pb);

2.                                    AIIIBV → AI BV                 (Li,Rb,Cs)3(Sb,Bi);

3.                                   AIIBVI  → AI BVI               (Cu,Ag)2(O,S,Se,Te);

4.                                3AIIBVI → AIII    VI

2  B3         (Al,Ga,In)2(O,S,Se,Te)3

Рассмотрим, как в приведенных примерах реализуется ковалентная связь и какое влияние на кристаллическую структуру оказывает горизонтальное замещение компонента A в соединениях ANB8−N.

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты