Преобразование Фурье в силовой электронике

July 24, 2013 by admin Комментировать »

Преобразование Фурье представляет собой наиболее широко используемое средство преобразовать произвольную функцию от времени в набор ее частотных составляющих на плоскости комплексных чисел. Это преобразование может быть применено для апериодических функций для определения их спектров, и в этом случае комплексный оператор s может быть заменен на/со:

С целью определения наиболее интересных частот может быть использовано численное интегрирование на комплексной плоскости.

Для ознакомления с основами поведения этих интегралов рассмотрим несколько примеров. На Рис. 14.6 (слева) приведен импульс единичной площади во временной области и его спектральный состав; в центре — импульс такой же площади, но большей амплитуды, а справа — амплитуда импульса бесконечна, однако его площадь по-прежнему равна единице. Правая картинка особенно интересна тем, что спектр импульса с нулевой шириной содержит все частоты с равными амплитудами.

Рис. 14.6. Спектры импулъсовразной ширины, по одинаковой пяошрди

В 1822 г. французский математикЖ. Б. Ж. Фурье (J. B.J. Fourier) показал в своей работе, посвященной вопросам теплопроводности, что любая периодическая функция может быть разложена на исходные компоненты, включающие частоту повторения и набор гармоник этой частоты, причем каждая из гармоник имеет свою амплитуду и фазу по отношению к частоте повторения. Основные формулы, используемые при Фурье-преобразовании,таковы:

где A() представляет собой компоненту постоянного тока, а Ап и Вп — гармоники основной частоты порядка и, находящиеся соответственно в фазе и противофазе с ней. Функция/(*), таким образом, является суммой этих гармоник и Ло-

В случаях, когда f{x) симметрична относительно тс/2, т. e. f{x) на области от л до 2л = -f{x) на области от 0 до л, и отсутствует компонента постоянного тока, формулы Фурье-преобразования упрощаются до:

где n = 1, 3,5, 7…

Все гармоники являются синусоидами, только часть из них находится в фазе, а часть — в противофазе с основной частотой. Большинство форм сигналов, встречающихся в силовой электронике, могут быть разложены на гармоники этим манером.

Если преобразование Фурье применить к прямоугольным импульсам длительностью 120°, то гармоники будут составлять набор порядка k = би ± 1, где n — одно из целых чисел. Амплитуда каждой гармоники h по отношению к первой связана с ее номером соотношением h = l//e. При этом первая гармоника будет иметь амплитуду, в 1.1 раза большую, чем амплитуда прямоугольного сигнала.

Преобразование Фурье выдает амплитудное значение для каждой гармоники, но, так как все они являются синусоидальными, среднеквадратичное значение получится просто делением соответствующей амплитуды на корень из 2. Среднеквадратичное значение сложного сигнала представляет собой корень квадратный из суммы квадратов среднеквадратичных значений каждой гармоники, включая первую.

При работе с повторяющимися импульсными функциями полезно рассмотреть рабочий цикл. Если повторяющиеся импульсы на Рис. 14.7 имеют среднеквадратичное значение X за время А, то среднеквадратичное значение за время В будет равно X(A/B)12. Таким образом, среднеквадратичное значение повторяющихся импульсов пропорционально корню квадратному из значения рабочего цикла. Применив этот принцип к прямоугольным импульсамдлительностью 120° (рабочий цикл 2/3) с единичной амплитудой, получим среднеквадратичное значение (2/3)1/2 = 0.8165.

Рис. 14.7. Определение среднеквадратичного значения (RMS) для повторяющихся

импульсов

Интересно проверить этот результат путем суммирования гармоник, соответствующих упомянутой последовательности прямоугольных импульсов. В Табл. 14.2 приведены результаты этого суммирования. Как видно, все совпадает.

Таблица 14.2. Результаты суммирования гармоник, соответствующих

периодическому сигналу с рабочим циклом 2/3 и единичной амплитудой

Номер гармоники

Амплитуда гармоники

Суммарное среднеквадратичное значение

1

0.7787

0.7787

5

0.1557

0.7941

7

0.1112

0.8019

11

0.0708

0.8049

13

0.0599

0.8072

17

0.0458

0.8085

19

0.0410

0.8095

00

0.8165

Для целей сравнения можно сгруппировать любой набор гармоник и определить соответствующий общий уровень гармонических искажений. Среднеквадратичное значение сигнала при этом определяется по формуле

где h\ — амплитуда первой (основной) гармоники, а h„ — амплитуда гармоник порядка n > 1.

Компоненты, ответственные за искажения, могут быть записаны отдельно как

где n > 1. Тогда

где Fund — первая гармоника, а коэффициент нелинейньа искажений {THD) получится равным D/Fund.

Хотя анализ прямоугольной последовательности импульсов весьма интересен, он редко применяется в реальном мире. Коммутационные эффекты и другие процессы делают прямоугольные импульсы больше похожими на трапецеидальные, или, в случае с преобразователями, с передним фронтом, описываемым выражением 1 cos(0) и задним фронтом, описываемым зависимостью cos(0), где 0 < 0 <u. Увеличение времен нарастания и спада прямоугольных импульсов «смягчает» набор соответствующих гармоник, так что амплитуда гармоник высокого порядка уменьшается пропорционально (1Д2) вместо (1Д) при более низких частотах. При отображении зависимости этих амплитуд от частоты на бумаге с двойным

логарифмическим масштабом наклон соответствующих участков этого графика составляет -2 и -1.Для систем с типовыми значениями реактанса изменение наклона примерно приходится на частоты от 11-й до 35-й гармоники сетевой частоты, причем при увеличении реактанса или тока в системе частота изменения наклона снижается. Практический результат от всего этого состоит в меньшей значимости высших гармоник, чем можно подумать.

Хотя увеличение реактанса способствует уменьшению гармоник высших порядков, обычно это не выполнимо. Более предпочтительным для уменьшения гармонических составляющих в потребляемом токе является увеличение числа импульсов при выпрямлении или преобразовании напряжения, достигаемое сдвигом фаз. Применительно к трансформаторам эта тема была затронута в гл. 7. Если тиристорный преобразователь или выпрямитель питается от обмоток трансформатора, соединенных звездой и треугольником, а выходы преобразователя или выпрямителя соединены последовательно или параллельно, то получается 12-пульсационное выпрямление. Номера гармоник в наборе теперь получаются k = \2n ± 1 взамен k = 6и + 1, где n — одно из целых чисел. Взамен гармоник 5-го и 7-го порядкатеперь появляются гармоники 11-го и 13-го порядков, амплитуда которых существенно меньше. Вполне возможно применение еще большего числа пульсаций, и, например, в больших источниках питания для электрохимических установок используются 48-пульсационные системы. Так как в больших выпрямителях и преобразователях используются наборы соединенных параллельно диодов или тиристоров, дополнительная стоимость фазосдвигающих обмоток в трансформаторе в основном определяет и его цену. На Рис. 14.8 показаны преимущества 12-пульсационной схемы перед 6-пульсационной. Гармоники 11-го и 13-го порядка в 12-пульсационной схеме имеют типовое значение амплитуды, равное примерно 10% от первой гармоники. В схемах с большим числом пульсаций гармоники имеют порядок k = pn + 1, где p — число пульсаций.

Для интереса отметим, что пары наборов гармоник, которые просто сдвинуты друг относительно друга на 30°, не взаимоуничтожаются в 6пульсационной схеме. Токи этих гармоник проникают назад через трансформатор; таким образом, требуется дополнительный сдвиг фаз для получения возможности их взаимного уничтожения.

Не все гармоники находятся в фазе с первой. Например, в трехфазном наборе гармоник, соответствующем последовательности прямоугольных импульсов 120°, фазы гармоник меняются в соответствии с последовательностью -5-я, +7-я, -11-я, +13-я и т.д. При разбалансировке в трехфазной цепи могут возникать однофазные компоненты, что влечет за собой утраивание гармоник с нулевым фазовым сдвигом.

Рис. 14.8. Спектры 6и 12-пульсациоиных преобразователей

Изолирующие трансформаторы часто рассматриваются как панацея от проблем с гармониками. Эти трансформаторы добавляют некоторый реактанс в систему и тем самым способствуют снижению уровня высших гармоник, однако, кроме подавления токов нулевой последовательности и электростатической развязки, проку от них немного.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты