Драйверы для управления силовыми элементами

August 27, 2013 by admin Комментировать »

В этом разделе мы подробно поговорим о таких специфических узлах силовой электроники, как драйверы управления мощными ключевыми элементами, и, в частности, силовыми транзисторами MOSFET и IGBT. Как показывает практика, качественные технические показатели драйверных узлов в значительной степени определяют надежность функционирования статических преобразователей. Почему? Дело в том, что надежная работа электронной техники может быть обеспечена только качеством элементной базы, заложенной при ее проектировании, а также физическим исполнением этой элементной базы. Иными словами, чем меньше номенклатура и количество элементов в составе электронного устройства, тем надежнее его работа. Кроме того, немаловажным для обеспечения надежности является замена дискретных элементов на узлы, выполненные в интегральном (или хотя бы гибридном) исполнении. Хорошо известно, что с появлением интегральных микросхем резко сократилось число незащищенных межэлементных электрических связей, а поэтому стало меньше причин к возникновению отказов. Красноречивое тому свидетельство — стремительное уменьшение масс и габаритов персональных компьютеров при росте их производительности и функциональных возможностей.

К сожалению, узлы силовой преобразовательной техники в большинстве случаев слабо интегрируются, что ведет к дополнительным сложностям при ее разработке, производстве и эксплуатации. Однако и в этой области наметились существенные сдвиги, впрочем, в основном касающиеся схем управления. Разработаны и применяются специализированные интегрированные микроконтроллеры, формирующие управляющие последовательности, осуществляющие плавный пуск, стабилизацию, различные виды защит. Однако следует признать, что элементы силовой части преобразовательной техники по настоящее время разрабатываются на основе дискретной базы, поэтому в конечном итоге качество функционирования разработки зависит не только от качества элементной базы, но также и от того, насколько квалифицированно разработчик соединит эти элементы, насколько полно он учтет влияние паразитных параметров.

Проектируя схему управления силовыми транзисторными сборками, опытный разработчик отлично знает, что:

а)           необходимо обеспечивать «плавающий» потенциал управления «верхним» силовым ключом в полумостовой схеме;

б)           крайне важно создать быстрое нарастание и спад управляющих сигналов, поступающих на затворы силовых элементов для снижения тепловых потерь на переключение;

в)           необходимо обеспечить высокую величину импульса тока управления затворов силовых элементов для быстрого перезаряда входных (затворных) емкостей;

г)           в подавляющем большинстве случаев нужна электрическая совместимость входной части драйвера со стандартными цифровыми сигналами TTJI/КМОП (как правило, поступающих от микроконтроллеров).

Достаточно продолжительное время разработчики были вынуждены проектировать схемы драйверов управления на дискретных элементах. Эти схемы, в зависимости от квалификации и опыта разработчиков, получались более или менее удачными, но, скорее, все-таки «менее». Первым важным событием на пути интеграции драйверов управления стало появление микросхем серий IR21xx и IR22xx (а затем их более современных модификаций IRS21xx, IRS22xx), разработанных фирмой «International Rectifier». Эти микросхемы сегодня нашли широчайшее применение в маломощной преобразовательной технике, поскольку отвечают всем вышеназванным требованиям. Редкий опытный разработчик силовой преобразовательной техники не имеет опыта применения данных микросхем — настолько они популярны.

Но прежде чем рассказать об этих драйверных микросхемах, поясним, в чем заключаются их замечательные свойства, благодаря которым они стали столь популярными у разработчиков. Дело в том, что схема управления силовыми ключами всегда строится так, что ее выходной сигнал (в виде широтно-модулированных импульсов) задается относительно «общего» проводника схемы. Как видно из рис. 2.3.1, а, на котором показан полумостовой силовой каскад, для ключевого транзистора VT2 этого вполне достаточно — сигнал «Упр.2» можно непосредственно подавать на затвор (базу) транзистора через формирователь G2, так как его исток (эмиттер) связан с «общим» проводником схемы, и управление осуществляется относительно «общего» проводника.

Но как быть с транзистором VT1 который работает в верхнем плече полумоста? Если транзистор VT2 находится в закрытом состоянии, а VT1 открыт, на истоке VT1 присутствует напряжение питания UnilT. Поэтомудля коммутации транзистораУТ1 необходимо гальванически развязанное с «общим» схемы устройство G1, которое четко будет переда-

Рис. 2.3.1. К пояснению проблемы управления силовыми ключами в полумостовых схемах

вать импульсы схемы управления «Упр.1», не внося в сигналы искажений. Классическое решение этой проблемы состоит во включении управляющеготрансформатораТ1 (рис. 2.3.1, б), который, с одной стороны, гальванически развязываетуправляющие цепи, асдругой — передает коммутационные импульсы. Не случайно это техническое решение считается «классикой жанра»: оно известно не одно десятилетие. Мы не будем в подробностях рассматривать этот метод, так как он безнадежно устарел, а желающие познакомиться с ним подробнее без труда разыщут литературу по проектированию сигнальных трансформаторов.

Мы обратимся к сравнительно новому способу управления силовыми транзисторными ключами, называемому бутстрепным. Собственно, способ этот был разработан достаточно давно (первые рекомендации по его использованию можно найти в литературе, изданной в начале 80-х гг. XX в.), однако широкое распространение в практических конструкциях он получил после появления драйверных микросхем, поскольку его реализация на дискретных элементах достаточно сложна. Сразу отметим, что бутстрепный метод возможно эффективно использовать только для транзисторов MOSFET и IGBT, которые требуют ничтожных затрат мощности в цепи управления. Микросхемы IRS2110 и IRS2113, выпускаемые фирмой «International Rectifier», построены именно с применением бутстрепной схемотехники, выпускаются в стандартных корпусах для монтажа в отверстие и поверхностно-монтируемые. Внешний вид микросхем показан на рис. 2.3.2.

Входным сигналом служит сигнал микросхемы управления стандартной амплитуды логического уровня, причем с помощью напряжения, подаваемого на вывод Vdd, можно обеспечить совместимость с классической 5-вольтовой «логикой», и более современной 3,3-вольтовой. На выходе драйвера имеются напряжения управления «верхним» и «нижним» силовыми транзисторами. 6 драйвере приняты меры по обеспечению необходимых управляющих уровней, создан эквивалент гальванической развязки (псевдоразвязка), имеются дополнительные функции — вход отключения, узел защиты от понижения напряжения питания, фильтр коротких управляющих импульсов.

Как видно из структурной схемы (рис. 2.3.3), драйвер состоит из двух независимых каналов, которые предназначены для управления верхним и нижним плечом полумостовых схем. На входе драйвера предусмотрены формирователи импульсов, построенные на основе триггеров Шмита. Входы Vcc и Vdd предназначены для подключения питающего напряжения силовой и управляющей частей схемы, «земляные» шины силовой части и управляющей части развязаны (разные «общие» выводы — Vss и СОМ). В подавляющем большинстве случаев эти выводы просто соединяют вместе. Предусмотрена также возможность раздельного питания управляющей и силовой части для согласования входных уровней с уровнями схемы управления. Вход SD — защитный. Выходные каскады построены на комплиментарных полевых транзисторах. В составе микросхемы имеются дополнительные устройства, обеспечивающие ее устойчивую работу в составе преобразовательных схем: это устройство сдвига уровня управляющих сигналов (VdcyVcc level shift), устройство подавления коротких импульсных помех (pulse filter), устройство задержки переключения (delay) и детектор пониженного напряжения питания (UV detect).

Типовая схема включения драйверов приведена на рис. 2.3.4. Конденсаторы C1 и C3 — фильтрующие. Фирма-производитель рекомендует располагать их как можно ближе к соответствующим выводам. Конденсатор C2 и диод VD1 — бутстрепный каскад, обеспечивающий питание схемы управления транзистора «верхнего» плеча. Конденсатор C4 — фильтр в силовой цепи. Резисторы R1 и R2 — затворные. Эти резисторы также «спасают» драйвер от такого неприятного явления, как защелкивание выходных силовых каскадов микросхемы (не путать с защелкиванием в IGBT транзисторах!). Явление защелкивания выходных каскадов мы разберем чуть позже.

Рис. 2.3.4. Типовая схема включения IRS2110 и IRS2113

Иногда управляющий широтно-модулированный сигнал может быть сформирован не по двум управляющим входам отдельно, а подан на один вход в виде меандра с изменяющейся скважностью. Такой способ управления может встретиться, например, в преобразователях, формирующих синусоидальный сигнал заданной частоты. В этом случае достаточно задать паузу «мертвое время» между закрытием одного транзистора полумоста и открытием второго. Такой драйвер со встроенным узлом гарантированного формирования паузы «мертвое время» в номенклатуре фирмы «International Rectifier» имеется — это микросхема IRS2111. Микросхема выпускается в 8-выводном корпусе DIP (или SOIC). Структурная схема приведена на рис. 2.3.5.

На структурной схеме видно, что драйвер имеет встроенные узлы формирования паузы «мертвое время» (deadtime) для верхнего и нижнего плеч полумоста. Согласно документации производителя, величина «мертвого времени» задана на уровне 650 нс (типовое значение), что вполне достаточно для управления полумостами, состоящими из мощных MOSFET транзисторов. К сожалению, заданная величина «мертвого времени» не подлежит корректировке извне, поэтому использовать этот драйвер для управления транзисторами IGBT в целом не представляется возможным (ну разве что удастся найти экземпляры с небольшой длительностью остаточного токового «хвоста»).

Рис. 2.3.5. Функциональные узлы микросхемы IRS2111

Так как драйверы, выпускаемые фирмой «International Rectifier», широко известны и активно применяются разработчиками силовой техники, мы не будем подробнее останавливаться на других типах драйверных микросхем этой фирмы, а приведем их основные наименования (реально номенклатура выпуска значительно шире), которые, на взгляд автора книги, наиболее интересны для отечественных разработчиков (табл. 2.3.1). Желающие подробностей могут обратиться к оригинальной документации на сайте производителя [27].

Таблица 2.3.1. Параметры некоторых драйверных микросхем серии IRS

Очень важный параметр любого драйвера — это максимальный ток включения/отключения (/0+//0_). От величины этого тока зависит скорость переключения силового прибора, которая, как мы уже знаем, определяется величиной емкости затворов. К величайшему сожалению, драйверы фирмы «International Rectifier» не удается использовать при разработке мощной преобразовательной техники (их удел —преобразователи мощностью до 2…3 кВт). Почему? Во-первых, недостаточные для управления мощными силовыми приборами максимальные токи перезаряда входных (затворных) емкостей. Во-вторых, отсутствие гальванической развязки между управляющей и силовой частями драйвера. В-третьих, возможное возникновение эффекта защелкивания (блокировки) выходных комплиментарных структур драйвера из-за наличия наведенных токов.

При проектировании схем управления обычно считается, что выходной каскад управляющих драйверов состоит из двух комплиментарных полевых транзисторов VT1 и VT2 (рис. 2.3.6), который усиливает ток управления затвором силового ключа и имеет очень низкий выходной импеданс.

Рис. 2.3.6. Условное обозначение выходного каскада драйверной микросхемы

В действительности, благодаря специфике технологии изготовления выходных комплиментарных каскадов (рис. 2.3.7), кроме управляющих полевых транзисторов MPI и MNI в структуре кристалла имеются паразитные биполярные транзисторы QP1, QP2, QN1, QN2, которые образуют паразитную тиристорную р-п-р-п-структуру.

Теперь нам необходимо вспомнить, что в полевых транзисторах не последнюю роль играет эффект Миллера. Мы уже выяснили, что если транзистор коммутируется слишком быстро, а сопротивление цепи управления велико, напряжение на затворе может «подскакивать» на значительную (и даже опасную) величину. Затвор, присоединенный к выходу драйвера, прикладывает это наведенное напряжение к тиристорной р-п-р-п-структуре. Если приложенное напряжение окажется выше напряжения питания управляющего каскада всего-навсего на 0,3 В (величина напряжения «база—эмиттер» биполярного транзистора в открытом состоянии), наступает эффект «опрокидывания» паразит-

Рис. 2.3.7. Реальная структура выходного каскада драйверной микросхемы

ной тиристорной структуры, вывод питания замыкается на «общий» схемы. Защелка не может восстановиться автоматически, пока не будет снято питание с микросхемы, и выходной каскаддрайвера выгорает. Та же самая ситуация может возникнуть, если на выход драйвера будет наведено напряжение, на 0,3 В ниже потенциала «общего» схемы, как показано на рис. 2.3.8. Величина «затекающего» на выход драйвера тока определяется скоростью переключения транзистора — чем скорость больше, тем и ток больше. Максимальное значение «затекающего» тока, при котором драйвер работает устойчиво, для разных микросхем управления может быть разным. Для микросхем серии IRS этот наведенный ток не должен превышать 0,5 А. Повысить устойчивость микросхем управления к защелкиванию от наведенных токов можно двумя способами, и оба они связаны с ограничением скорости переключения транзисторов. Первый способ заключается в применении снаббера (специальной цепочки пассивных компонентов, замедляющей динамические процессы переключения). Второй — в установке между

Рис. 2.3.8. К пояснению защелкивания выходного каскада драйвера от «затекающих токов»

управляющим выводом драйвера и затвором ключевого транзистора небольшого сопротивления, ограничивающего наведенный ток. В этом случае наводимый ток будет замыкаться через емкости Cgd и C^, не «затекая» в микросхему управления. Величина резистора Rg не должна быть слишком большой, чтобы делитель напряжения, образованный указанными емкостями, не способствовал самопроизвольному открытию силового транзистора. В фирменной документации на драйверные микросхемы серии IRS указывается максимальный ток, который может «выдать» на управляющий вывод конкретный тип микросхемы. Если при выборе резистора микросхему использовать по току не более чем на 70—80 % от максимального значения тока, то в большинстве случаев эффект защелкивания проявляться не будет.

Второй причиной, которая может привести к защелкиванию драйвера, обычно является плохая разводка печатных проводников (рис. 2.3.9). Рассмотрим пример неудачной и удачной разводки. На рис. 2.3.9, а показано нижнее плечо полумостового каскада. Общий вывод микросхемы управления подключен не непосредственно к истоку силового транзистора, а так, что ток управления и силовой ток протекают по одному проводнику. Любой проводник, как мы знаем, обладает паразитной индуктивностью (в данном случае обозначим ее как Z/nap). При достаточно быстром изменении падения напряжения на транзисторе (Uds) во времени, скачок напряжения на паразитной индуктивности может «завернуть» точку «А» схемы выше напряжения питания микросхемы управления, типичное значение которого co-

ставляет 15 В. Это, как мы уже знаем, может привести к защелкиванию выходной структуры драйвера.

К счастью, паразитные транзисторы в выходном каскаде драйверной микросхемы обладают очень плохими частотными свойствами, поэтому, если энергия импульсного броска невелика (амплитуда импульса может быть большой при условии малости его длительности), защелкивание может и не произойти — паразитная тиристорная структура просто не успеет отреагировать на такой импульс. Опытным путем установлено, что при длительности наведенного импульса до 1 мкс вероятность защелкивания весьма мала.

Обезопасить свою разработку от защелкивания, вызванного плохим монтажом, возможно. Для этого необходимо разрабатывать топологию печати по следующему правилу: вывод «общий» микросхемы управления должен быть непосредственно присоединен к истоку мощного ключевого транзистора, а затем эта точка присоединяется к отрицательной клемме сетевого блокировочного конденсатора сглаживающего фильтра (рис. 2.3.9, б).

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты