Зачем нужны сетевые дроссели в силовых преобразователях?

August 30, 2013 by admin Комментировать »

Зачем вообще нужны сетевые дроссели? Это — очень важный элемент силовой схемы мощного статического преобразователя, который служит буфером между питающей сетью и самим преобразователем. Сетевой дроссель выполняет несколько очень существенных функций: он повышает коэффициент мощности статического преобразователя в среднем на 30…35 %, не прибегая к сложным схемотехническим ухищрениям; подавляет высшие гармоники входного тока преобразователя, возникающие в неуправляемом выпрямителе; выравнивает линейные напряжения на входе преобразователя при некотором перекосе фаз

Рис. 2.4.6. Внешний вид некоторых типовых дросселей фирмы «Elhand»

питающего напряжения; подавляет быстрые изменения напряжения на входе преобразователя вследствие коммутационных воздействий стороннего оборудования на питающую сеть; снижает скорость нарастания токов короткого замыкания. Тот, кто мало-мальски сталкивался с силовой техникой, знает, что питающее сетевое напряжение под влиянием работы высокочастотных преобразователей, потребляющих ток от сети в импульсном режиме, подвержено искажениям. Сетевые дроссели призваны гасить эти помехи и снижают риск попадания гармоник в питающую сеть. Более того, если в качестве силовых ключей используются тиристоры, сетевые дроссели гарантированно обеспечивают защиту их от лавинного нарастания тока проводимости вплоть до момента переключения [37].

где 1{ — ток основной гармоники;

/5, /7, /и — токи гармоник высших порядков.

Мы уже говорили ранее, что любой статический преобразователь характеризуется определенным значением коэффициента мощности, связанным с его схемотехническим построением. За счет чего снижается коэффициент мощности? За счет появления реактивной составляющей потребляемой мощности и увеличения потребления полной мощности по сравнению с активной. В потребляемом от сети токе появляются, кроме основной, высшие гармоники — 5, 7, 11, 13, 17, 19. В соответствии с известным соотношением коэффициент мощности:

Нетрудно заметить, что чем больше действующие значения высших гармоник тока, тем меньше коэффициент мощности, и тем больше влияние статического преобразователя на питающую сеть. Однако здесь есть одно важное обстоятельство, которое нас выручает: реактивное сопротивление, присутствующее в питающей сети (это могут быть различные реактансы трансформаторов питающих подстанций), может существенно подавлять высшие гармоники. К сожалению, трансформаторных реактансов далеко не всегда хватает для эффективного подавления гармоник, поэтому приходится для преобразователей эти реактансы увеличивать, искусственно вводя сетевые дроссели.

Выбрать соответствующий дроссель фирмы «Elhand» для установки в разрабатываемый преобразователь достаточно просто. Главным условием выбора является соотношение индуктивности подводящих проводов (с учетом реактанса питающего генератора или трансформатора) Ls и собственно индуктивности сетевого дросселя Ld\

где UT — величина напряжения на силовом приборе в момент его коммутации, В;

diT/dt — крутизна нарастания тока проводимости силового прибора, А/с.

Оценить параметры UT и diT/dt в случае использования IGBT приборов несложно — эти данные можно получить из анализа величины выпрямленного питающего напряжения, а также скорости нарастания тока при переключении, который определяется характером нагрузки преобразователя (активная, индуктивная, комбинированная) и скорости коммутации IGBT приборов.

Значительно сложнее оценить значение Ls, так как заранее неизвестно, как будет питаться преобразователь, от какого источника, какой длины окажутся питающие проводники, какой будет их длина и конфигурация. Поэтому фирма «Elhand» рекомендует в любом случае устанавливать в разрабатываемый преобразователь сетевой дроссель, ориентируясь по величине тока, потребляемой от сети. С этой целью, для облегчения такого выбора, специалисты «Elhand» разработали типовой ряд трехфазных дросселей типа ED3N. Некоторые типономиналы из этого ряда приведены в табл. 2.4.1.

Основным проектировочным критерием здесь является допустимое падение напряжения на дросселе в нагруженном состоянии, которое не должно превышать нескольких процентов от номинального напряжения сети:

где UL — падение напряжения на дросселе;

/— частота напряжения сети;

Тип

Параметры, мГн/А

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

ED3N

8,5/3,3

125

85

105

2,3 ,

0,5/70

230

170

200

18

0,15/150

240

190

207

   24_

0,05/400

340

200

295

47

0,03/800

360

245

360

78

Ld — проектная индуктивность дросселя;

/ — номинальный ток обмотки дросселя.

Следует отметить, что фирма «Elhand» выпускает также моторные трехфазные дроссели ряда ED3S, предназначенные для обеспечения непрерывности протекания тока в обмотках двигателей [38], а также однофазные дроссели компенсации гармоник частоты 100 Гц и 300 Гц типа EDlN и EDlW. Трехфазные моторные дроссели типа ED3S, в принципе, можно использовать в качестве сетевых, а однофазные типа EDlN и EDlW — в качестве сглаживающих элементов сетевых LC-фильтров.

Конечно, дроссели как таковые, являются достаточно тривиальными элементами, которые можно изготавливать в условиях даже очень небольших производственных фирм. Почему же все-таки рекомендуется ориентироваться на покупные дроссели? Ответ очень прост: действительно, теоретически разработать и изготовить любой дроссель несложно, однако не будем забывать о трудозатратах на изготовление, о технологической стороне вопроса, о длительных сроках эксплуатации преобразовательной техники, которая зачастую вынуждена функционировать в жестких климатических и механических условиях среды. Дроссели промышленного изготовления, в частности, поставляемые фирмой «Elhand», полностью отвечают этим требованиям: они производятся фирмой со специализированной отработанной технологией, имеют низкую стоимость, прочны механически, пропитаны вакуумным способом (что позволяет сохранить высокое сопротивление изоляции в условиях повышенной влажности), оснащаются удобными для монтажа клеммами, оптимизированы по габаритам. К сожалению, на момент выхода этой книги из печати полные отечественные аналоги таких дросселей отсутствовали, что ставит в затруднительное положение отечественных разработчиков спецтехники.

Но вернемся к вопросу использования сетевых дросселей для ограничения пусковых токов. Автором книги с помощью компьютерного моделирования в пакете MicroCAP 7.0 была проанализирована реальная схема входной части статического преобразователя мощностью

12 кВт, с сетевым дросселем ED3N и дросселями подавления пульсации 300 Гц типа EDlW, показанная на рис. 2.4.7.

Рис. 2.4.7. Схема входного звена с использованием дросселей «Elhand»

Дроссель L1 — сетевой, дроссели L2, L3 входят в состав LC-фильтpa. Диодный мост типа 160MT120KB (производитель — «International Rectifier»), емкостная часть фильтра составлена из 12 конденсаторов типа B43586-A5687-Q (производитель — «Epcos») с эквивалентной емкостью 1020 мкФ. Фильтр радиопомех, в силу его незначительного влияния на процесс ограничения сверхтоков, из модели исключен. Результаты моделирования показаны на рис. 2.4.8. Из представленного графика видно, что пусковой ток, протекающий через диоды VDl…VD6, не превышает допустимого для диодов, а переходный процесс длится не более 10 мс, что не приведет к срабатыванию установленного на входе преобразователя автоматического выключателя типа АК-50Б (максимальная токовая защита) с номинальным током 25 А и уставкой 121н.

Рис. 2.4.8. Результаты моделирования пусковых токов

Таким образом, сетевой дроссель L1 выполняет две функции: в момент включения он совместно с дросселями L2 и L3 защищает диодный мост от возникновения сверхтоков, а в режиме продолжительной работы осуществляет подавление высокочастотных гармоник.

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты