Ультрабыстрые диоды (диоды Шоттки)

September 8, 2013 by admin Комментировать »

Идеально подходят для силовых схем так называемые диоды Шоттки. Отличие диодов Шоттки от других диодов состоит в том, что они производятся по оригинальной технологии, и в их структуре практически отсутствуют неосновные носители заряда, которые как раз и влияют на величину времени обратного восстановления. На сегодняшний день в номенклатуре фирм можно встретить диоды Шоттки, допускающие прямой ток через себя порядка 240 А, например, 249NQ150 производства фирмы «International Rectifier». Другое преимущество диодов Шоттки — более низкое падение напряжения в открытом состоянии, что делает их незаменимыми в низковольтных схемах.

К сожалению, диоды Шоттки имеют существенный недостаток: максимальное обратное напряжение у самых лучших представителей этого класса силовых приборов не превышает величину 150 В. Более того, в подавляющем большинстве случаев вы едва ли встретите диоды Шоттки встроенными в корпуса мощных силовых модулей. Что предпринять в таком случае? К счастью, разработана технология производства специальных ультрабыстрых диодов, называемых гексагональными эпитаксильными диодами со сверхбыстрым временем обратного восстановления. Например, диоды серии Hexfred, производимые фирмой «International Rectifier», имеют величинудопустимого напряжения в закрытом состоянии до 1200 В, а по своим свойствам обратного восстановления могут легко соперничать с диодами Шоттки.

Познакомимся с характеристиками ультрабыстрых диодов поподробнее. На рис. 2.7.25 показана типовая кривая обратного восстановления ультрабыстрого диода. В момент открывания ключевого транзистора VT начинается спадание тока диода, затем ток достигает нулевого значения, меняет знак и далее достигает значение irrm, называемого в технической документации пиковым током обратного восстановления (peak reverse recovery current). Процесс нарастания тока обратного восстановления занимает время /fl, называемое временем роста обратного тока восстановления. После этого ток спадает до

Конечно, в технической документации обычно приводятся данные по суммарному времени обратного восстановления, пиковому току обратного восстановления, и по этим данным теоретически можно рассчитать тепловые потери, возникающие в процессе обратного восстановления диода. Однако на практике пользоваться этими данными для расчета тепловых потерь неудобно, так как величина пикового тока обратного восстановления и время восстановления зависят от величины приложенного обратного напряжения. Производители диодов рекомендуют для определения тепловых потерь обратного восстановления пользоваться величиной заряда обратного восстановления (reverse recovery charge), обозначаемого символом Qrr Величину заряда обратного восстановления можно получить непосредственно из технической документации на конкретный диод или рассчитать по приближенной формуле

нулевого значения за время tb9 называемое временем спада обратного тока восстановления. Полное время trr обратного восстановления диода (reverse recovery time) определяется по формуле

Тепловые потери обратного диода в полумостовых силовых схемах складываются из статических потерь проводимости и потерь обратного восстановления. Статические потери вычислить несложно: они будут определяться величиной прямого падения напряжения Uf на открытом диоде, средним током проводимости и длительностью протекания тока в открытом состоянии, отнормированному к периоду коммутации.

С потерями обратного восстановления сложнее. Поскольку к диоду прикладывается большое обратное напряжение в то время, когда через него течет прямой ток, диоду нужно рассеивать большую мощность. Функция изменения тока во времени носит сложный характер (рис. 2.7.25), поэтому нам придется вычислять мгновенную мощность на очень коротких промежутках времени, а потом получившиеся результаты просуммировать.

Итак, энергия тепловых потерь определяется суммой произведений тока через диод на напряжение, приложенное к нему, на протяжении времени протекания тока. Поскольку к диоду прикладывается напряжение величиной Um, энергия переключения E^ будет определяться по формуле

Если мы внимательнее присмотримся к формуле (2.7.9), то обнаружим, что интеграл здесь есть заряд обратного восстановления диода, который может быть вычислен по формуле (2.7.8) или взят из справочных данных. С учетом приведенных выражений, можно вычислить мощность потерь обратного восстановления:

i

где / — частота коммутации.

Полные тепловые потери, как обычно, определяются суммой статических и динамических потерь по формуле

В табл. 2.7.2 приведены основные параметры некоторых ультрабыстрых диодов.

Таблица 2.7.2, Параметры некоторых ультрабыстрых диодов фирмы «International Rectifier»

Мировые производители силовой элементной базы выпускают столь большую номенклатуру ультрабыстрых диодов, что рассматривать их в рамках данной книги просто не имеет смысла, а читатели без труда найдут для своих разработок подходящие диоды без дополнительных авторских «наводок». Расскажем лишь о перспективах отечественного производства этих важных для силовой электроники компонентов. К примеру, ОАО «ВЗПП-Сборка» [18] выпускает значительное количество ультрабыстрых диодов, аналоги которых производятся «International Rectifier». Диапазон токов этих диодов ограничивается значениями 20…25 А, поэтому в случае необходимости использования более мощных диодов имеет смысл обратить внимание на продукцию ОАО «Электровыпрямитель» [21]. Эта уже знакомая нам фирма поставляет на рынок диодные быстровосстанавливающиеся модули типа SFRD в полумостовом включении (анод первого дио

да подключен к катоду второго) и в одиночном включении. Полумостовые диодные сборки маркируются как М2ДЧ, а одиночные — как МДЧ. Время обратного восстановления диодов и диодных сборок не превышает 0,2…0,3 мкс при номинальных рабочих токах до 300 А.

Кратко упомянем такие всем известные элементы, как стандартные диодные мосты. Оказывается, при разработке силовых схем статических преобразователей эти элементы играют чрезвычайно важную роль: диодный мост — это одно из важнейших звеньев силовой преобразовательной схемы, и при выходе его из строя неработоспособным становится весь преобразователь. Кроме того, до настоящего времени разработчику приходилось закладывать в свои разработки выпрямительные диоды в одиночном исполнении, соединяя их, например, по трехфазной схеме выпрямления Ларионова. Понятно, что при таком подходе разработчик сильно проигрывает в габаритах этого узла.

Специально для применения в силовой преобразовательной технике разработаны компактные диодные мосты, включающие в себя четыре диода (однофазная схема) и шесть диодов (трехфазная схема). На рис. 2.7.26 показан внешний вид трехфазного диодного моста типа 160MT120KB, выпускаемого фирмой «International Rectifier». Диодный мост выдерживает значение продолжительного номинального тока до 160 А, а также значение пикового пускового тока до 1500 А. Диоды моста рассчитаны на значение обратного напряжения до 1200 В.

Интерес для разработчика силовой преобразовательной техники могут также представлять диодные мосты, производимые ЗАО «Электрум АВ» [22]. Номенклатура их достаточно широка: выпускаются

мосты как для монтажа на печатную плату (в том числе и в трехфазном варианте), так и для объемного монтажа. К примеру, мосты типоразмера M6 (рис. 2.7.27) производятся на номинальные токи 63 А, 100 А, 160 А, 200 А, 250 А с рабочим напряжением до 1200 В (исполнение 12) и до 1600 В (исполнение 16). Диоды выдерживают пятикратную токовую перегрузку.

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты