Управление тиристорами в схемах на микроконтроллере

February 8, 2014 by admin Комментировать »

Тиристором называется четырёхслойный полупроводниковый прибор, состоящий из последовательно чередующихся областей p- и «-типов проводимости. До 1979 г. тиристоры называли тринисторами. С появлением ГОСТ 20859.1-79, а затем ГОСТ 20859.1-98 классификация изменилась следующим образом:

•                 триодные тиристоры или, сокращённо, тиристоры;

•                 тиристоры-диоды (тиристоры с встроенным обратным диодом);

•                 лавинные, асимметричные, запираемые тиристоры;

•                 комбинированно-выключаемые тиристоры;

•                 симметричные триодные тиристоры или, по-другому, симисторы, триаки;

•                 фототиристоры, оптотиристоры, оптосимисторы.

Три вывода тиристора обозначают буквами: «А» (анод, Anode), «К» или «С» (катод, Cathode), «УЭ» или «G» (управляющий электрод или Gate — затвор).

Мощность нагрузки, подключаемой к аноду/катоду тиристора во много раз превышает мощность сигнала управления. Важной особенностью тиристора является то, что будучи однажды открыт, он находится в таком состоянии постоянно, вплоть до полного снятия питания. Следовательно, для управления тиристором можно использовать короткие импульсы.

В зависимости от слоя полупроводника, с которым внутри соединяется вывод УЭ, тиристоры бывают с управлением по катоду (Рис. 2.102, а, встречаются чаще) и с управлением по аноду (Рис. 2.102, б, встречаются реже).

Рис. 2.102. Условные графические обозначения тиристоров: а) с управлением по катоду; б) с управлением по аноду.

Среди множества электрических параметров тиристоров интерес, с точки зрения сопряжения с MK, представляют следующие:

•                 ток отпирания УЭ /уэ (десятки-сотни миллиампер);

•                 максимальное напряжение УЭ  уэ(единицы-десятки вольт);

•                 Длительность импульса включения Твкл(микросекунды).

Типовые параметры тиристоров семейства КУ221: /уэ = 0.15 А; б эмлх = 7 В; Гвкл MIN = 2 МК с (в реальных схемах устанавливают 50 МК с…Ю мс); частота повторения импульсов на входе УЭ должна быть не более 30 кГц. Остальные параметры относятся к силовой части. Они зависят от мощности/напряжения в нагрузке и должны выбираться отдельно, без привязки к схемотехнике MK.

Для обеспечения долговременной надёжности работы тиристоров следует придерживаться свода простых правил:

•                 импульс УЭ должен иметь запас по току относительно минимально допустимого, иначе может произойти локальный пробой стуктуры слабым током помехи и выход тиристора из строя [2-187];

•                 рабочие напряжения и токи в силовой части надо выбирать с коэффициентом запаса 0.7…0.8 от максимально допустимых по даташиту;

•                 электрические параметры входа УЭ имеют значительный технологический разброс, поэтому расчёты элементов надо вести на худший случай. Тем не менее, некоторые экземпляры тиристоров могут включаться и при пониженных (по сравнению с даташитом) токах, напряжениях, чем часто пользуются радиолюбители в своих конструкциях;

•                 для повышения помехоустойчивости между катодом и УЭ рекомендуется ставить резистор сопротивлением 51… 1000 Ом. Другое решение — обеспечить низкий выходной импеданс генератора управляющих импульсов;

•                 следует создавать комфортный температурный режим для тиристора с применением радиаторов и теплопроводящих паст, например, КТП-8.

При коммутации нагрузки в цепи 220 В управляющие импульсы желательно синхронизировать с моментами перехода сетевого напряжения через нуль. Такой приём резко снижает уровень ВЧ-помех, «засоряющих» эфир. Для плавного изменения напряжения в нагрузке применяют фаз число-импульсное управление, при этом не имеет значение, как подключаются тиристоры к MK: без развязки от сети 220 В (Рис. 2.103, а…ж) или с гальванической изоляцией (Рис. 2.104, а…н).

а) импульсами с выхода MK периодически открывается транзистор K77, а через него и тиристор VS1. От частоты следования импульсов будет изменяться среднее напряжение в нагрузке RH. Необязательный конденсатор C7 уменьшает ВЧ-помехи в момент коммутации;

б) аналогично Рис. 2.103, а, но максимально упрощённо. Тем не менее, реально работает;

в) тиристор VS1 питается постоянным, а не пульсирующим напряжением, поэтому включается он положительным импульсом с выхода MK, а выключается полным снятием напряжения питания +9…+ 18 В;

г) аналогично Рис. 2.103, в, но без транзистора и с выключением тиристора VS1 нажатием кнопки SB1. Резистором R1 устанавливается ток управления не более 15 мА. Падение напряжения на тиристоре в открытом состоянии составляет 0.6…1.5 В. Контакты кнопки SB1 должны выдерживать максимальный ток, на который рассчитана нагрузка RH\

д) микросхема DD1 имеет выход с открытым коллектором и служит ключом, открывающим тиристор VS1. Резистором R1 задаётся ток управления, но его может не хватить для конкретного тиристора из-за низкого напряжения питания +5 В (проверяется экспериментально);

 Рис. 2.103. Схемы подключения тиристоров к МК  без гальванической изоляции (окончание):

е) классическое включение шунтирующего резистора R3 между входом УЭ и катодом тиристора VSI. Напряжение питания +5 В для MK может быть получено от +9 В через стабилизатор;

ж) на вход УЭ тиристора VS1 через резистор R3 подаётся повышенное до+12 В напряжение, чтобы обеспечить гарантированное отпирание. В некоторых случаях, подбирая тип тиристора VS1, можно добиться его включения при пониженном напряжении +5 В. Необязательный конденсатор С/ несколько замедляет скорость нарастания управляющего тока (при этом увеличиваются потери мощности), но он защищает тиристор VS1 от ложных срабатываний.

Рис. 2.104. Схемы гальванической изоляции MK от тиристоров (начало):

а) гальваническая развязка через оптопару VU1. Тиристор VS1 подаёт напряжение в нагрузку Rн только во время одного полупериода сетевого напряжения 220 В. В другой полупериод нагрузка обесточена, поскольку закрыт диод VD2. Стабилитрон VD1 задаёт оптимальное напряжение на входе УЭ тиристора VS1. Резистор R2ограничивает ток управления;

б) аналогично Рис. 2.104, а, но с другой полярностью импульсов от MK, с дополнительным резистором R2, с конденсатором фильтра C1 и с другим стабилитроном VD1\

в) на обоих выходах МК  должны синхронно выставляться НИЗКИЕ и ВЫСОКИЕ уровни. Резисторы R1, &2 — токоограничивающие. Резистор R4 повышает помехоустойчивость;

г) гальваническая развязка на трансформаторе T1. Каждый из тиристоров VS1, VS2 открывается в свою полуволну сетевого напряжения импульсами с выхода МК  длительностью 10 МК с и периодом 0.7…1 мс. Для питания транзистора VT1 применяется отдельный источник +5 B(2), чтобы помехи не нарушали работу MK. Трансформатор T1 наматывается на кольце из феррита 79HM K25xl5x5, в обмотке I — 40 витков, в обмотках II, III — по 80 витков провода ПЭВ-0.25;

д) MK формирует импульсы частотой 100 Гц и длительностью 12 МК с, которые постепенно за 3 с смещаются с конца полупериода сетевой синусоиды к ее началу. Как следствие, оптосимтор VU1 «малыми шажками» переходит в полностью открытое состояние, организуя плавный заряд ёмкости высоковольтного конденсатора C3. Дроссель L1 наматывается на кольце из феррита M2000HM1 K31xl8.5×7 и содержит две обмотки по 25 витков провода ПЭВ-1.0 в каждой;

е) коммутация нагрузки RH при помощи тиристора VS1 и изолированного оптореле VU1\

ж) гальваническая развязка MK выполнена на оптопаре VU1. Трансформатор T1 служит не для изоляции (нагрузка RH и так связана с сетью 220 В), а для отпирания тиристора VS1 повышенным напряжением +9…+12 В при токе до 0.15 А. Экономически такое решение оправдано при многоканальной системе с большим числом тиристоров и одним трансформатором;

з) VU1 — сдвоенный опто тиристорный модуль фирмы «Элемент-Преобразователь». Линии МК  запараллелены для повышения мощности. Замена VU1 — два оптотиристора ТО 125-10-6;

и) гальваническая развязка на оптосимисторе VU1. Тиристоры VS1, К£2соединены противонаправленно. Каждый из них открывается в «свой» полупериод сетевого напряжения;

к) тиристор оптопары VU1 замыкает диагональ диодного моста VD1, чтобы коммутировать нагрузку RH в оба полупериода сетевого напряжения. Ток через нагрузку не более 100 мА;

л) аналогично Рис. 2.104, к, но с другой полярностью импульсов и другими типами ЭРИ;

 Рис. 2.104. Схемы гальванической изоляции МК от тиристоров (окончание):

м) стробоскоп с опторазвязкой. Тиристор VS1 через повышающий трансформатор T1 [2-196] периодически поджигаетлампу EL1. Светодиод HL1 индицирует вспышки стробоскопа;

н) маркировка на корпусе оптотиристоров VU1, Г772содержит буквы и символы вместо привычных арабских цифр. Мощность в нагрузке RH не более 100 Вт.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты