Схема регулятора скорости вращения двигателя постоянного тока – для новичков в радиоделе

June 6, 2014 by admin Комментировать »

Традиционная схема стабилизатора частоты вращения вала электродвигателя постоянного тока в переносных кассетных магнитофонах, реализованная на двух транзисторах или на транзисторной микросборке и одном транзисторе, применяется нашей промышленностью уже более 15 лет в неизменном виде Современные радиоэлементы позволяют построить более простые в схемотехническом отношении стабилизаторы частоты вращения, но обладающие более совершенными характеристиками

Рис 331 Схема стабилизатора

В предлагаемом варианте стабилизатора использовано всего шесть радиоэлементов (не считая электродвигателя), но удалось добиться более высокой стабильности работы при изменении температуры окружающей среды и напряжения источника питания Диапазон питающих напряжений для данной схемы составляет 6..20 В При необходимости сместить диапазон регулирования скорости в область малых оборотов вала электродвигателя следует изменить полярность включения стабилитрона или заменить его другим, с меньшим напряжением                                                                                                                                    стабилизации

Величина сопротивления резистора R3 зависит от сопротивления цепи якоря (Rя) применяемого двигателя н примерно равна 1,5 Rя Вместо микросхемы К140УД6 проверялась работа К140УД7 Транзистор КТ815А можно заменить транзисторами КТ815 и КТ817 с любым буквенным индексом Подстроечный резистор R1 типа CП5-2

П ЛЕОНЕНКО, г Кемерово, Радио

Как и в предыдущей главе, начнём рассказ с рассмотрения работы схемы

У коллекторных двигателей постоянного тока скорость вращения вала определяется, как правило, напряжением на двигателе Напряжение на двигателе и потребляемый им ток определят некоторое эквивалентное сопротивление, которое будет отличаться от измеренного омметром сопротивления обмотки двигателя Если у вас есть конкретный моторчик, для которого вы намерены создать схему  стабилизации, то можно провести  измерения и  определиться  с параметрами моделирования Если нет, то можно выбрать их «наугад», а позже привести к конкретному виду

С распределения напряжений в схеме и начнём

Обозначение резисторов на схеме ниже я не сохранил Двигатель заменил резистором R2 И, поскольку программа позволяет добавить много измерительных приборов, в количестве вольтметров я себя не ограничивал

Рис 332 Распределение напряжений в схеме

Рабочее напряжение стабилитрона КС133А – это 33В Если напряжение на двигателе стало больше, возрастает ток через стабилитрон, увеличивается падение напряжения на резисторе R2 При этом напряжение на выходе операционного усилителя уменьшается, что приводит к уменьшению тока базы транзистора VT1 и уменьшению напряжения на эмиттере транзистора, а, следовательно, на двигателе При уменьшении напряжения процессы проходят в обратном направлении Изменяя напряжение питания, можно получить следующие результаты:

Рис 333 Напряжения на двигателе при разных напряжениях питания

Напряжение на двигателе, измеряемое вольтметром Pr1 изменяется незначительно при существенном изменении напряжения питания

Эквивалентное сопротивление двигателя (ток через моторчик) будет зависеть от нагрузки на валу двигателя Ток будет возрастать с возрастанием нагрузки Возрастающий ток увеличит падение напряжения на резисторе R1 Что увеличит падение напряжения на резисторе R4 и приведёт к увеличению напряжения на выходе операционного усилителя, то есть, к увеличению напряжения на двигателе А это, в свою очередь, должно увеличить скорость вращения вала, замедлившегося от увеличения нагрузки на валу Увеличение нагрузки на валу я буду моделировать уменьшением сопротивления R2 с 30 до 20 Ом

Рис 334 Изменение напряжения на двигателе при изменении нагрузки

Резисторы R1 и R2 мы можем рассматривать как резисторы отрицательной обратной связи, а резисторы R5 и R4 как резисторы положительной обратной связи Отрицательная обратная связь должна следить за напряжением на двигателе при изменении питающего напряжения, а положительная менять напряжение на двигателе при изменении нагрузки на валу

Разобрав на модели работу схемы, постараемся реализовать подобную или похожую схему на микроконтроллере Вновь скажу, что менять операционный усилитель на микроконтроллер, я особенного смысла не вижу Но считаю, что полезно это выполнить хотя бы за компьютером

Итак Микроконтроллер устройство в своей основе цифровое Поэтому можно использовать такой принцип регулировки напряжения на двигателе:

Как и в других случаях с переменным напряжением, напряжение на двигателе будет действующим В данном случае средним за период колебаний

Уменьшая длительность импульса с высоким уровнем напряжения, увеличив при этом длительность импульса с низким уровнем напряжения, мы получим уменьшение среднего напряжения И наоборот

Такой принцип регулирования напряжения на двигателе наилучшим образом подходит для цифрового устройства

Конечно, как и в случае аналогового управления, схема пополнится управляющим транзистором

Рис 335 Принцип регулировки напряжения на коллекторном двигателе

Воспроизвести такое напряжение с помощью программы не составляет труда Мы собирали такую программу для генератора прямоугольных импульсов Ту часть аналоговой схемы, которая следит за напряжением питания, можно пока оставить без внимания: микроконтроллер лучше питать стабилизированным напряжением

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты