КОМПАРАТОРЫ И ПОЛИКОМПАРАТОРНЫЕ МИКРОСХЕМЫ в устройствах на микросхемах

July 8, 2014 by admin Комментировать »

Компараторами называют электронные устройства, предназначенные для сравнения двух или более электрических величин. Компараторы часто используют для преобразования аналогового сигнала в цифровой, а также для восстановления формы искаженных цифровых сигналов. Компаратор может использоваться в качестве порогового устройства, срабатывающего в случае, если входной контролируемый сигнал превысит по величине сигнал заданный, опорный.

По виду сравниваемых входных сигналов компараторы подразделяют на две группы: аналоговые; цифровые.

Учитывая специфику данной монографии, ограничимся описанием аналоговых компараторов.

Аналоговый компаратор можно представить как простейший однобитный аналого-цифровой преобразователь. Выходной сигнал такого компаратора представлен, как правило, двумя возможными значениями, соответствующими уровням входного сигнала больше или меньше некоторой заданной пользователем величины:

♦  уровнем логической единицы;

♦  уровнем логического нуля.

В связи с этим важнейшими характеристиками компаратора являются величина и стабильность уровня (порога) перехода устройства из одного стабильного состояния в другое.

Зависимость выходного напряжения компаратора UBbIX от уровня входного UBX можно представить как

где Uon — опорное напряжение (напряжение сравнения).

Или, иными словами,

Компараторы чаще всего используют в пороговых, релейных схемах, устройствах контроля критически значимых величин.

Помимо основного назначения компараторы способны работать в качестве генераторов импульсов, аналого-цифровых преобразователях, схемах согласования логических уровней, схемах очистки зашумленных цифровых сигналов и т. д. Менее распространены двух- или более пороговые компараторы, которые наиболее часто применяют в простых индикаторах уровня входного сигнала, например, в светодиодных шкалах.

Компараторы по своему назначению или особенностям строения можно подразделить на такие группы:

♦  высоковольтные;

♦  низковольтные;

♦    маломощные компараторы, в том числе с источником опорного напряжения, в качестве которого может быть использован ОУ;

♦    повышенной выходной мощности, в том числе с защитой от перегрузки;

♦  высокоскоростные или повышенного быстродействия;

♦    с открытом выходом, выходом на КМОП, транзисторнотранзисторной или эмиттерно-связанной логике;

♦  с выходом «rail to rail»;

♦    двух- и более скоростные с автоматическим переходом на экономичный режим работы;

♦  прецизионные;

♦  многопороговые;

♦  многоканальные;

♦  с гистерезисом;

♦  стробируемые;

♦  с цифро-аналоговым преобразователем;

♦  программируемые;

♦  прочие.

Примечание.

Как правило, заметный выигрыш по одному из параметров обуславливает не менее значимый проигрыш по другому параметру. Так; например, пониженное энергопотребление компаратора достигается за счет снижения его быстродействия.

Компараторы обычно не содержат элементов частотной коррекции, имеют передаточную характеристику релейного типа и поэтому не могут использоваться в качестве линейных усилителей аналоговых сигналов, например, в качестве ОУ В то же время компараторы широко применяют для сопряжения аналоговых и цифровых устройств, на их основе могут быть созданы эффективные усилители D-класса.

Как было показано ранее, в качестве компараторов могут быть использованы обычные операционные усилители, охваченные петлей положительной обратной связи. Порок такого решения — низкая нагрузочная способность подобных устройств, поскольку для управления энергоемкой нагрузкой требуется применение усилителей мощности.

Специализированные компараторы, ориентированные, в отличие от операционных усилителей, на решение узкого круга задач, отличаются:

♦  повышенной нагрузочной способностью;

♦  быстродействием;

♦  невозможностью работы в линейном режиме.

Схемы компараторов — детекторов нуля, работающих на положительных или отрицательных перепадах входного напряжения, показаны на рис. 18.1 и 18.2. Переходная характеристика UBblx = UBbDC (UBX ) идеального компаратора имеет строго прямоугольную форму. Реальная форма этой характеристики (рис. 18.1 и рис. 18.2), определяется конечной скоростью переходных процессов, неидеальностью работы компаратора и его элементов.

Примечание.

Отмечу, что в крайне узком диапазоне входных напряжений компаратор способен работать как усилитель с крайне высоким коэффициентом усиления (порядка 105—106 и более). Очевидно, что стабильность работы такого усилителя невелика, т. к. положение его рабочей точки в существенной мере зависит от температуры окружающей среды, стабильности источников питающих напряжений и других факторов.

При желании точку переключения состояния компаратора (порог срабатывания) можно сместить в любую сторону относительно нуля.

Пример компаратора со ступенчато переключаемым — плавно регулируемым порогом срабатывания приведен на рис. 18.3.

Порог переключения компараторов не является строго фиксированной величиной. Обычно напряжение переключения компаратора нестабильно и в процессе работы хаотически смещается в ту или иную сторону от заданного уровня. Амплитуда таких флуктуаций определяется: свойствами конкретного типа компаратора; его разновидности; качеством изготовления; температурой окружающей среды; внешними воздействиями.

Примечание.

В этой связи при построении прецизионных схем сравнения напряжений необходимо предусматривать минимизацию или нейтрализацию собственных шумов компаратора.

Неприятной особенностью работы компараторов является их работа при уровнях входных сигналов вблизи порога разрешения переключения. В этом случае, если входной сигнал сильно зашумлен, на выходе компаратора появляется последовательность дельтавидных или иглоподобных апериодических импульсов, вносящих обычно сбои в работу радиоэлектронной аппаратуры.

Для минимизации паразитного переключения компаратора в условиях его работы с зашумленными сигналами иногда применяют схемотехнический прием, заключающийся в преднамеренном искажении формы переходной характеристики. На переходной характеристике такого компаратора наблюдается отчетливо выраженный гистерезис.

Рис. 18.4. Схема компаратора с гистерезисом (триггера Шмитта)

На рис. 18.4 и 18.5 показаны схемы компараторов с искусственно организованными петлями гистерезиса. Ширину петли гистерезиса AUraCT можно определить из выраже-

Рис. 18.5. Схема компаратора с регулируемой шириной петли гистерезиса

напряжение ограничения компаратора. Напряжения переключения компаратора +U и -U относительно заданного (нулевого, рис. 18.4 и 18.5, уровня) можно определить по

формуле

Компаратор уровней сигнала по амплитуде позволяет сопоставить величину (уровень) двух сигналов и переключить свой выходной уровень с логической единицы на нуль (или наоборот) в случае, если входной сигнал превысит заданный порог срабатывания компаратора.

Рис. 78.7. Схема нерегулируемого двухпорогового компаратора напряжения

Рис. 78.6. Схема двухпорогового компаратора на операционном усилителе

Отдельной проблемой сопоставления уровней сигналов является задача двух- или многопорогового разделения сигналов. Варианты решения такой задачи показаны на рис. 18.6, 18.7 [18.1]. Зависимость выхо дного сигнала от уровня входного показана на рис. 18.7.

Порог переключения компаратора Όι (рис. 18.7) устанавливают подачей напряжения Uynp. В случае, если на вход компаратора подается высокое отрицательное напряжение, то оно действует только на инвертирующий вход микросхемы DA1.

При снижении уровня входного напряжения до значения

где UVD1=0,6—0,7 В (падение напряжения на кремниевом диоде VD1), на выходе ОУ установится положительное напряжение, рис. 18.7.

При дальнейшем возрастании уровня входного напряжения вплоть до значения U2 выходное напряжение компаратора имеет уровень логической единицы. Однако, при UBx >U2 диод VD1 более не шунтирует вход ОУ, компаратор вновь переключается, на его выходе устанавливается уровень логического нуля.

Для того, чтобы плавно управлять порогом переключения компаратора, может быть использована схема, рис. 18.8 [18.1]. Потенциометром R3 устанавливают порог переключения компаратора. Ширину зоны чувствительности компаратора регулируют потенциометром R2:

Сдвоенный компаратор К1464СА1

Рис. 78.8. Схема регулируемого компаратора напряжения

[18.2] (аналог LM193, LM293, LM393, LM2903 фирмы Philips, SGS-Thomson Microelectronics и NS [18.3]) отличается от иных:

♦  малой потребляемой мощностью;

♦    возможностью сравнивать сигналы, близкие к нулевому уровню.

Рис. 78.9. Состав и цоколевка микросхемы сдвоенного компаратора К1464СА1

Компаратор (рис. 18.9) работает при напряжении питания 2—36 В (однополярное) и 2±(1 —18) В (двуполярное питание) [18.2, 18.3]. Потребляемый ток менее 1 мА при напряжении питания 5 В и 2,5 мА при 36 В. Выходной ток — свыше 6 мА. Входное напряжение смещения не свыше 7 мВ при токе до 0,25 мкА. Выходные сигналы компаратора совместимы при работе с ТТЛ, ЭС77, КМОП- логическими элементами.

Примечание.

Отмечу, что перечисленные микросхемы отличаются лишь температурной областью устойчивой работы (температурный диапазон сужается от LM193K LM393).

На следующих рисунках показаны примеры практического использования микросхемы К1464СА1 (использован лишь один из двух компараторов) [18.2].

пор.н. ^ ^пор.в.’

Типовые схемы инвертирующего и неинвертирующего компараторов на микросхеме К1464СА1 приведены на рис. 18.10 и рис. 18.11. Значения нижнего и верхнего входного порогового напряжения U, рис. 18.10, определяется как [18.2]:

Рис. 18.14. Схема совместного использования компараторов LM 193, LM293, LM393, К1464СА1 сТТЛ и КМОП- логическими элементами

Рис. 18.10. Схема инвертирующего компаратора на микросхеме К1464СА1

Рис. 18.11. Схема неинвертирующего компаратора на микросхеме К1464СА1

Unop.H Unop в               Unop.H Unop.в

Рис. 18.12. Передаточные характеристики компараторов

Рис. 18.13. Компаратор на микросхеме LM193, LM293, LM393, К1464СА1

При R1=R2=R3 Unop H * UniiT /3, UnopB * 2Unm /3, что примерно совпадает с соответствующими уровнями переключения из одного устойчивого состояния в другое для КМОП-микросхем. Передаточные характеристики инвертирующего и неинвертирующего компараторов показаны на рис. 18.12.

Типовая схема использования микросхем LM193, LM293, LM393, К1464СА1 в качестве компаратора показана на рис. 18.13 [18.3].

На рис. 18.14 показаны типовые схемы использования компараторов с микросхемами ТТЛ и КМОП-серий.

На рис. 18.15 показана схема выделения прохождения сигнала через ноль: при каждом прохождении входного напряжения через ноль детектор вырабатывает короткий импульс

[18.2]. В устройстве также использован инвертирующий компаратор напряжения с гистерезисом. Диод VD1 защищает входные цепи компаратора при появлении на входе минусовых полупериодов сигнала. Напряжение питания устройства 5 В.

На рис. 18.16 и рис. 18.17 показаны примеры использования компараторов в качестве НЧ усилителей с малой (рис. 18.16) и повышенной (рис. 18.17) нагрузочной способностью [18.3]. Коэффициент передачи усилителей определяется соотношением резистивных элементов R3/R2 и равен 100.

Рис. 18.18. Схема преобразователя- индикатора магнитного поля на компараторе LM393

Рис. 18.17. Схема НЧ усилителя на компараторе LM393 с повышенной нагрузочной способностью

Рис. 18.16. Схема НЧ усилителя на компараторе LM393

Рис. 78.75. Схема детектора «нуля».

На основе компараторов серии LM193, LM293, LM393, К1464СА1 может быть изготовлен преобразовательиндикатор магнитного поля, использующий в качестве датчика катушку индуктивности L1, рис. 18.18 [18.3].

Преобразователи амплитуды входного сигнала в ширину выходного используют в измерительной технике, импульсных блоках питания, цифровых усилителях.

На рис. 18.19,18.20 приведены схемы преобразователей амплитуды в ширину импульса [18.4]. Преобразователи выполнены на основе компараторов DA1 — К554САЗ. Напряжение на входах компаратора примерно равно половине напряжения питания (задается резистивным делителем R1/R2) и различается на величину напряжения, падающего на открытом переходе диода VD1. Входное сопротивление преобразователя равно Rl(R2)/2 или 25 кОм.

При подаче на вход синусоидального сигнала или сигнала пилообразной, треугольной формы и увеличении амплитуды, начиная с некоторого порогового значения, на выходе устройства формируются прямоугольные импульсы, ширина которых зависит от амплитуды входного сигнала. Схемы не требуют настройки. Полоса рабочих частот (область низких частот) определяется емкостью конденсаторов С1 и С2.

Устройства (рис. 18.19,

Рис. 18.79. Схема преобразователя амплитуды входного сигнала в ширину выходного на компараторе К554САЗ

18.20) отличаются способом подключения входов компаратора и, соответственно,

«полярностью» выходных сигналов. Частотная зависимость порогового напряжения начала работы преобразователей при использовании Si и Ge-диодов VD1 показана на рис. 18.21.

Для Ge-диодов (Д9Г) пороговое напряжение в полосе частот 5—200 кГц составляет 80—90 мВ, для Si (КД503А) — 250—270 мВ. Максимальная амплитуда входного сигнала — 2—2,5 В. При уменьшении номиналов резисторов R1 и R2 чувствительность устройства возрастает за счет снижения прямого напряжения на диоде VD1, одновременно снижается и входное сопротивление.

Преобразователь напряжения в частоту, схема которого представлена на рис. 18.22, позволяет при изменении входного напряжения от 0 до 5 В получить на выходе линейное увеличение частоты от О до 21 кГц (коэффициент преобразования 4,2 кГц/В с нелинейностью не свыше 3%) [18.5].

Таймер на микросхеме DA1 КР1006ВИ1 включен по схеме мультивибратора, времязадающий резистор которого заменен генератором тока на операционном усилителе DA1 741 (К140УД7).

Рис. 18.23. Схема прецизионного преобразователя напряжение-частота

Для получения высокой линейности преобразования отклонение сопротивление резисторов от номинала не должно превышать 0,5 %.

Помимо основного назначения — усиления сигналов, микросхема К1464УД1 может быть использована и в устройствах иного назначения, например, для преобразования напряжения входного сигнала в частоту выходного.

Преобразователь напряжение-частота (рис. 18.23) содержит управляемый генератор из интегратора на ОУ DA1.1 и компаратора с гистерезисом на ОУ DA1.2 [18.6]. На выходе интегратора формируется линейно изменяющееся во времени напряжение, скорость нарастания которого зависит от уровня входного напряжения UBX, а направление изменения — от состояния выхода компаратора DA1.2.

На выходе преобразователя формируется последовательность импульсов прямоугольной формы, частота которых прямо пропорционально зависит от уровня входного напряжения (0—3,5 В).

На основе ОУ КР140УД1208, который работает в диапазоне питающих напряжений ±1,5…±18 В при коэффициенте усиления до 200000, может быть собрано множество конструкций, в том числе устройств сравнения, часть из которых представлена на рис. 18.24—18.26 [18.7].

Примечание.

Микросхема выгодно отличается тем, что имеет защиту от короткого замыкания в цепи нагрузки.

Рис. 18.24. Схема индикатора разрядки батареи на микросхеме КР140УД1208

Индикатор разрядки батареи, рис. 18.24, содержит узел сравнения текущего значения контролируемого напряжения с некоторым образцовым значением. Для формирования образцового

напряжения использован узел, выполненный на транзисторе VT1. При достижении критического уровня напряжения, устанавливаемого при помощи потенциометра R9, включается генератор звуковых сигналов, выполненный на микросхеме DA1. В качестве излучателя звука использован пьезокерамический излучатель BF1 (ЗП-З).

Рис. 18.25. Упрощенный вариант индикатора разрядки батарей с визуальной индикацией

Емкость конденсатора С1 подбирают по максимальной громкости звучания пьезокерамического излучателя (настройка на его резонансную частоту).

Упрощенный вариант индикатора со светодиодной индикацией показан на рис. 18.25. Порог срабатывания (6,5 В) подбирают регулировкой потенциометра R2. Ток «молчания» индикаторов — 0,1 мА, индикации — 1 мА.

Индикатор электрического поля, схема которого представлена на рис. 18.26, предназначен для дистанционного бесконтактного контроля уровня электрического поля при приближении обслуживающего персонала к токонесущим конструкциям высокого напряжения.

В качестве антенны, определяющей чувствительность устройства, использована пластинка из фольгированного стеклотекстолита 55×33 мм, спрятанная в корпусе. Прибор срабатывает при приближении антенны к проводке под напряжением 220 В на расстояние не менее 50 см.

Совет.

Последовательно со светодиодом HL1 и капсюлем BF1 полезно включить токоограничивающий резистор сопротивлением до 300 Ом.

Рис. 18.26. Схема аудиовизуального индикатора электрического поля на микросхеме КР140УД1208

На основе компаратора DA1 КР554САЗБ может быть собрана схема фото- или термочувствительного реле, рис. 18.27 [18.8]. В первой из схем

(слева) в качестве светочувствительного элемента использован фотодиод VD1 КФДМ (или иной), входящий в состав сбалансированного резистивного моста. Балансировку моста осуществляют регулировкой потенциометра R2. К диагонали моста подключены входы компаратора DA1. Схема отрегулирована таким образом, чтобы при изменении уровня светового потока, падающего на приемную площадку фотоприемника, происходило переключение компаратора.

Примечание.

Если перед светочувствительным элементом установить светофильтр, можно создать прибор, чувствительный к излучению в определенной области спектра. Если использовать поляризационный светофильтр, прибор будет реагировать только на световой поток соответствующей поляризации. Такие устройства можно использовать, например, для автоматического открывания дверей ворот или гаража, когда к ним подъезжает автомобиль хозяина. Для повышения надежности срабатывания реле можно воспользоваться схемой совпадения, таким образом, реле будет срабатывать, если свойства сигнала-ключа будут отвечать, по меньшей мере, двум ключевым признакам.

В качестве нагрузки в реле [18.8] использовано оптоэлектронное реле 5П19.10ТМА-3-6, коммутирующее лампу накаливания, либо иную другую нагрузку.

Рис. 18.27. Схема фото- или термочувствительного реле на компараторе КР554САЗБ

Совет.

Вместо оптоэлектронного можно использовать и обычное электромагнитное реле с током срабатывания до 50 мА, обмотку которого в целях защиты выходного транзистора компаратора следует защитить параллельно подключенным диодом или электролитическим конденсатором.

Светодиод HL1 предназначен для визуального контроля момента срабатывания компаратора.

При желании фото- чувствительное реле (рис. 18.27, слева) легко преобразовывать в термочувствительное (рис. 18.27, справа). В качестве термочувствительного элемента можно использовать обычный кремниевый диод VD1, например, КД103А>

КД102А и др. Для снижения инерционности контроля в качестве датчика следует выбирать диод с минимальной массой.

Несколько модифицировав схему (рис. 18.27), можно получить реле времени для использования освещения подъездов и лестничных клеток, рис. 18.28 [18.8].

При кратковременном нажатии на любую из параллельно установленных на каждом этаже кнопок SB1—SBn кратковременно (на время, определяемое произведением R1C2), примерно на 60 с, включится лампа накаливания. Конденсатор С2 должен иметь малый ток утечки.

Пороговый индикатор превышения заданного уровня температуры, схема которого представлена на рис. 18.29 [18.9], может быть использован для автоматического регулирования теплового режима теплиц, инкубаторов, нагревательных узлов, систем сигнализации и т. д.

В устройстве использован компаратор DA1, нагруженный на светодиодный излучатель HL1. Питание индикатора стабилизировано. В качестве датчика температуры использован терморезистор R3 (или иной датчик). Рабочая точка (температура срабатывания) задается регулировкой потенциометра R4. Схему легко настроить на включение или отключении нагрузки (индикатора), поменяв его входы местами. В качестве датчика можно использовать, при необходимости, элементы, чувствительные к изменению освещенности (фоторезисторы), электрического поля (полевые транзисторы) и т. д.

Генератор на основе инвертирующего компаратора напряжения с гистерезисом на микросхеме К1464СА1, рис. 18.30,

вырабатывает короткие импульсы прямоугольной формы частотой 16 кГц [18.2]. Длительность импульса равна 0,7R4C1, паузы — 0,7R1C1, следовательно, период импульсов равен 0,7C1(R4+R1), а частота — 1,44/Cl (R4+R1).

Рис. 18.31. Схема удвоителя частоты на основе компараторе

Рис. 18.30. Схема генератора прямоугольных импульсов на компараторе

Пороговое устройствокомпаратор может быть использовано в качестве широкодиапазонного (в определенных пределах) удвоителя частоты сигналов, рис. 18.31 [18.10]. Работа устройства основана на запоминании уровня сигналов на том или ином входе компаратора и последующем динамическом сопоставлении их уровня в ходе переходных процессов при заряде/раз- ряде конденсаторов.

В итоге на выходе устройства формируется последовательность импульсов с удвоенной по отношению к входному сигналу частотой, рис. 18.32. Входной сигнал имеет частоту 500—1000 Гц при амплитуде до 10 В.

Для иных частот потребуется подбор RC-элементов входных цепей.

Рис. 18.32. Входные и выходные сигналы удвоителя частоты на основе компараторе

Рис. 18.33. Схема устройства защиты от перенапряжения

Простое устройство (рис. 18.33) предназначено для защиты радиоэлектронного оборудования от недопустимых перепадов напряжения [18.11]. При снижении напряжения на входе устройства ниже некоторого заданного при помощи потенциометра R4 уровня сработает реле, отключив/подклю- чив своими контактами нагрузку, элемент защиты или стабилизации и т. п.

В качестве стабилитрона VD1 можно использовать стабилитрон на напряжение 3,3—5,1 В. Величина сопротивления R1 вычисляется исходя из того, чтобы напряжение на входном резистивном делителе R1—R2 примерно соответствовало напряжению на его движке, установленном посередине (т. е. примерно 2,4 В для стабилитрона КС147). Рассчитать

U, -U,

величину этого сопротивления можно из выражения: Rl=——-R2,

где Uj — входное напряжение срабатывания устройства, U2 — напряжение, примерно равное 2,4 В для стабилитрона КС147. Так, для 1^=100 В Rl=407 (390) кОм.

Напряжение питания устройства может быть выбрано в пределах 9—24 В. Следует лишь учитывать, чтобы реле надежно и без гистерезиса переключалось, а элементы схемы работали без перегрузок. На практике устройство можно использовать для автоматической записи телефонных разговоров. В этом случае параллельно резистору R2 рекомендуется подключить электролитический конденсатор емкостью не менее 100 мкФ.

Схема включения компаратора, рис. 18.34 [18.3], позволяет за счет наличия в его входных цепях RC-элементов отфильтровывать высокочастотные (R2C1) и низкочастотные (R1C2) наводки на полезный сигнал.

Пороговое устройство для слежения за температурным режимом, рис. 18.35, выполнено на микросхеме LM393 [18.12]. В качестве датчика температуры использован терморезистор R2, имеющий отрицательный температурный коэффициент. Для измерений используется традиционная мостовая резистивная схема.

Для сравнений уровней напряжения на диагонали моста использован компаратор. Порог срабатывания компаратора плавно регулируют потенциометром R4. Для звуковой индикации используют зуммер BF1 с пятивольтовым питанием (или заменяющий его мультивибратор с телефонным капсюлем в цепи нагрузки).

Рекомендуемые уровни напря

жений: 4,9 В — на выводе 5 микросхемы; 2,9 В — на выводе 6.

Параллельно шинам питания включают электролитический (470 мкФ) и керамический (0,1 мкФ) конденсаторы.

С использованием линейки однотипных компараторов (рис. 18.36) можно получить устройство светодиодной индикации уровня входного сигнала, например, радиоприемника, аудиоплеера [18.13]. Сетка опорных напряжений образуется на резистивном делителе R1—R9, образованном однономинальными резисторами. Входное напряжение поступает на неинвертирующие входы всех компараторов одновременно.

По мере повышения уровня входного напряжения поочередно будут высвечиваться светодиоды снизу вверх (по схеме), визуально в соответствии с уровнем входного сигнала будет перемещаться вверх-вниз или влево-вправо светящаяся точка, динамически показывающая уровень сигнала на входе устройства.

Чувствительность индикатора можно варьировать, подбирая соотношение номиналов входного резистивного делителя R10/R11.

Вход устройства можно подключить к движку потенциометра узла электронной настройки радиоприемника. В этом случае светодиодная шкала будет индицировать частоту приема, что особенно удобно при эксплуатации радиоприемника или передатчика в темное время суток.

Используя изложенный выше принцип поочередного управления нагрузками при изменении уровня входного управляющего напряжения, можно решить задачу многокомандного управления нагрузками по двухпроводной линии, рис. 18.37 [18.14]. Для этого использован выносной пульт-делитель напряжения, дающего при нажатии на кнопки S1—S8 сетку опорных управляющих напряжений.

Для дешифровки и преобразования уровней напряжения, поступающих по двухпроводной линии, использована линейка из восьми однотипных компараторов. Выходы компараторов через токоограничивающие резисторы R20—R27 соединены с входами КМОП-инверторов, в качестве которых могут быть использованы элементы КМОП-микросхем серии К561у К564у например, К561ЛН1У К561ЛН2 и им подобные (К564ЛЕ5, К561ЛА7 с параллельно включенными входами по схеме инвертора). Диодные цепочки, выполненные на германиевых диодах, предназначены для выполнения условия установки нулевого уровня сигнала на выходе задействованного канала управления.

Как следует из анализа схемы многоканального управления нагрузок, устройство избыточно усложнено. Например, за счет использования всего одной специализированной поликомпараторной микросхемы — амплитудного мультиплексора UAA180 (К1003ПП1) эта же задача может быть решена в расширенном варианте: двухпроводное управление 12-ю нагрузками при токе нагрузки до 10 мА [18.15—18.17].

Рис. 1837. Схема двухпроводного восьмикомандного управления по двум проводам

Рис. 1838. Схема многокомандного управления нагрузками по двухпроводной линии

Поликомпараторное устройство многокомандного управления нагрузками по двухпроводной линии [18.15] представлено на рис. 18.38.

Оно выполнено на основе специализированной микросхемы UAA180 (К1003ПП1), предназначенной для 12-ти ступенчатого дискретного преобразования уровня аналогового сигнала на управляющем входе в номер коммутируемого канала индикации. При размыкании одного из ключей S1—S12 на управляющем входе микросхемы DA1 формируется сигнал с напряжением по сетке 0—0,5—1,0— … 5,5 В (всего 12 уровней). Соответственно величине управляющего сигнала к шине питания подключается одна из 12-и нагрузок, варианты выполнения которых А и В представлены на рис. 18.38.

Если в качестве нагрузки включить резистор сопротивлением порядка 1 кОм и более, с этого сопротивления можно снимать логический сигнал с уровнем 1/0 для управления цифровыми логическими КМОП- устройствами.

Для формирования сетки напряжений необходим подбор номиналов резистивного делителя R1—R11. Проще всего подобрать эти резисторы можно путем замены каждого из резисторов потенциометром, регулировкой которого при нажатии на одну из кнопок S1—S11 следует добиться срабатывания требуемого канала индикации. Далее потенциометр можно заменить обычным резистором (или их набором) соответствующего номинала.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты