СХЕМЫ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ

July 12, 2014 by admin Комментировать »

Преобразователи напряжения предназначены для повышения или понижения уровня выходного напряжения или изменения его полярности относительно входного с минимальными потерями.

Как правило, такие преобразователи чаще всего ориентированы на работу с индуктивной нагрузкой — накопителем энергии. При периодическом процессе накопления/сброса накопленной энергии и реализации определенных схемотехнических решений можно целенаправленно менять уровень и знак выходного напряжения.

Преобразователи напряжения на основе специализированных микросхем были подробно рассмотрены в моей предыдущей монографии

[28.1]. В этой связи рассмотрим ниже не включенные в то издание схемные решения.

Рис. 28.7. Схема понижающего преобразователя напряжения на микросхеме LM723

Микросхемы серии LM723 можно использовать в качестве понижающих преобразователей напряжения [28.2]. Варианты таких схем для получения выходного пониженного напряжения положительной и отрицательной относительно общего провода полярности приведены на рис. 28.1 и рис. 28.2.

Большинство микросхем, предназначенных для преобразования напряжения, могут работать только от источников положительного напряжения. Нетрадиционное включение микросхемы преобразователя напряжения МАХ761 позволило использовать ее в схеме, питаемой источником отрицательного напряжения, представленной на рис. 28.3 [28.3].

Рис. 28.2. Схема понижающего преобразователя напряжения отрицательной полярности на микросхеме LM723

Рис. 28.3. Схема включения микросхемы преобразователя напряжения МАХ761 при питании от источника отрицательного напряжения

КПД преобразователя достигает 86 % при токе нагрузки до 0,4 А. В качестве VD1 использован «сверхбыстрый» диод Шоттки (General Semiconductor).

Микросхема КР1446ПН1Е (прототип — микросхема МАХ756) представляет собой импульсный повышающий преобразователь напряжения с КПД до 80 %. Представлена на рис. 28.4 и рис. 28.5 [28.4]. Входное напряжение 0,9—5,0 В; выходное — либо 3,3 В, либо 5,0 В по выбору пользователя при токе нагрузки до 100 мА.

Типовая схема преобразователя напряжения на микросхеме КР1446ПН1Е приведена на рис. 28.5. Выбор выходного напряжения производится подключением вывода 2 микросхемы к общему проводу (ивых = 3,3 В) или к выводу 6 (UBbIX = 5,0 В). Дроссель L1 должен иметь высокую добротность и намотан проводом диаметром не менее 0,5 мм на штыревом сердечнике. Он должен быть присоединен к микросхеме проводом минимальной длины. В качестве диода VD1 использован в целях повышения КПД диод Шоттки.

Преобразователь напряжения на микросхеме TPS61042 (фирма Texas Instruments) работает при подаче на него питающего напряжения свыше 2,5 Ву рис. 28.6 [28.5, 28.6]. Выходное напряжение преобразователя 16,2 В при токе нагрузки до 30 мА. КПД преобразования при входном напряжении 2,5 В составляет 80 %, при 5 В — приближается к 86 %. Рекомендуемое значение индуктивности L1 лежит в пределах 2,2—47 мкГн.

Рис. 28.6. Схема преобразователя напряжения на микросхеме TPS61042

Рис. 28.5. Схема преобразователя постоянного напряжения на. микросхеме КР7446ПН1Е

Рис. 28.4. Структурная схема микросхемы КР1446ПН1Е

Сверхяркие светодиоды белого свечения имеют высокий КПД. Это позволяет использовать их в качестве рабочих элементов портативных источников света — фонариках. Такие светодиоды отличаются от обычных повышенным рабочим напряжением, обычно свыше 3 В, в связи с чем обычные способы питания напрямую от батареи гальванических элементов малоприемлемы. По этой причине обычно питают ультраяркие светодиоды через повышающие напряжение преобразователи напряжения. Схемы подобных преобразователей представлены на рис. 28.7 и рис. 28.8 [28.7].

Для питания ультраяркого светодиода электрического фонарика от одного гальванического элемента (аккумулятора) С. Баширов использовал преобразователь напряжения на микросхеме КР1446ПН1, включенный по типовой схеме с выходным напряжением 3,3 В, рис. 28.7 [28.8].

Преобразователь, рис. 28.8

[28.7], выполненный на микро-

Рис. 28.7. Схема преобразователя напряжения на микросхеме КР1446ПН1 для питания сверхяркого светодиода фонарика

воде от дросселя сетевого фильтра маломощного импульсного источника питания — кольце К10х4х5 из молибденового пермаллоя с магнитной проницаемостью 60. Можно использовать и дроссели на 40—199 мкГн с активным сопротивлением обмотки не свыше 0,1 Ом, рассчитанные на ток не менее 1 А, например, серии ДМ со стержневым магнитопроводом.

схеме МАХ756, работает при снижении напряжения питания до 0,4 В. Предельный ток нагрузки — до 200 мА (для четырех светодиодов L-53PWC, использованных в схеме, — ПОмА). Максимальный КПД преобразователя — 87 %.

Дроссель преобразователя содержит 35 витков провода ПЭВ-2 0,28, намотанных на магнитопро-

Современные сверхяркие светодиоды белого свечения требуют для своего питания напряжения не ниже 3,5 В. На таких светодиодах могут быть изготовлены миниатюрные высокоэффективные фонарики. Если использовать для их питания пару портативных «пуговичных» литиевых батарей, например, CR2025 или CR2032, рассчитанных на напряжение 3 В и гасить избыточное напряжение резистором, то КПД использования источника питания едва превысит 58 %.

Микросхема широтно-импульсного модулятора BTS629. Решить проблему преобразования напряжения с высоким КПД можно при применении специализированной микросхемы широтно-импульсного модулятора фирмы Siemens — DAI BTS629 (рис. 28.9) [28.9]. Яркость свечения светодиода можно плавно регулировать потенциометром R1, изменяя ширину импульса.

Рис. 28.8. Преобразователь напряжения на микросхеме МАХ756 для питания светодиодов карманного фонарика

Рис. 28.9. Схема миниатюрного светодиодного фонарика с КПД преобразования энергии батареи до 90 %

При использовании элементов CR2025 емкостью 170 мА-ч, карманный фонарик будет непрерывно работать до 15 ч, для CR2032 (230 мА-ч) — 21ч.

Линейка преобразователей серии ВР504х. Большинство портативных радиоэлектронных устройств получает питание от сети. В этой связи особо актуальна проблема создания портативных высокоэффективных преобразователей сетевого напряжения в постоянное напряжение низкого уровня при высоком КПД. Для решения этой задачи фирма Rhom создала линейку преобразователей серии ВР504х, рис. 28.10—28.14, табл. 28.1 [28.10].

Очевидный недостаток применения подобных микросхем в том, что выход источника питания не изолирован от питающей сети, что может привести к поражению потребителя электрическим током. В этой связи при использовании подобных преобразователей следует предпринимать меры по исключению возможного контакта тела человека с токонесущими конструкциями устройства.

Характеристики микросхем преобразователей напряжения серии ВР504х, ВР5085 Таблица 28.7

Напряжение сети (входное напряжение преобразователей) может варьироваться в пределах 226—390 В (типовое значение 282 В) при частоте 50 (60) Гц.

Рис. 28.7 0. Структурная схема микросхемы ВР504 7А

Типовые схемы включения микросхем серии ВР504х приведены на рис. 28.11 и 28.13 [28.10]. В качестве диодов выпрямителя рекомендуется использовать диоды, рассчитанные на обратное напряжение не ниже 700— 800 В при среднем выпрямленном токе не менее 0,5 А и пиковом токе до 20 А.

Конденсатор С1 может быть емкостью

Рис. 28. П. Схема бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5041А

3.3—  10 мкФ и рассчитан на напряжение 450 В. Конденсатор фильтра СЗ может иметь емкость 100—470 мкФ. Резистор фильтра R1 должен быть сопротивлением 10—22 Ом мощностью 0,25 Вт. Конденсатор С2 — пленочный, на напряжение не ниже 400 В. Он должен быть размещен в непосредственной близости от вывода входа микросхемы.

Микросхемы серии ВР5042, ВР5047, ВР5048, схемы которых представлены на рис. 28.12 и рис. 28.13, используют внешнюю катушку индуктивности. Конденсатор С1 имеет емкость

3.3—  22 мкФ и рассчитан на напряжение 450 В. Конденсатор фильтра СЗ может иметь емкость 100—470 мкФ. Резистор фильтра R1 должен быть сопротивлением

10—22 Ом мощностью 0,25 Вт. Конденсатор С2 — пленочный, емкостью 0,1—0,22 мкФ на напряжение не ниже 400 В. Для защиты микросхемы от повреждения параллельно клеммам питающей сети рекомендуется установить варистор, а в разрыв провода, соединяющего вход микросхемы — плавкий или многоразовый предохранитель FU1. Внешняя катушка индуктивности должна выдерживать ток не менее 0,4 А. Индуктивность этой катушки при использовании микросхем ВР5048, ВР5048—15, ВР5042—15, составляет 1 мГн для ВР5048—24, ВР5047А24 — 1,5 мГн.

Особо стоит выделить микросхему ВР5046 (рис. 28.14), которая позволяет в отличие от ранее рассмотренных микросхем получить выходное

напряжение иной полярности. Дроссель L1 имеет индуктивность 0,47 мГн для микросхемы ВР5046-5 и 1,5 мГн для микросхемы ВР5046 и рассчитан на ток не менее 0,57 и 0,3 А, соответственно.

Микросхема ВР5085-15 отличается от микросхем серии ВР504х цоколевкой, хотя и выполнена в корпусе SIP16. Типовая схема ее включения показана на рис. 28.15 [28.10].

С выхода преобразователя можно снимать два напряжения: 5 Б и 15 В при максимальном токе нагрузки 350 мА и 80 мА, соответственно. Конденсаторы фильтра СЗ и С4 могут иметь емкость 220—1000 мкФ. Рекомендуемое значение емкости конденсатора С1 33—820 мкФ на напряжение 450 В.

Дроссель L1 имеет индуктивность 1 мГн и рассчитан на ток не менее 0,6 А.

Рис. 28.14. Схема бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5046

Рис. 28.15. Схема бестрансформаторного преобразователя сетевого напряжения с выходными напряжениями 5 и 15 В на микросхеме ВР5085-15

Рис. 28.16. Схема источника питания на микросхеме SR036 (SR037) без гальванической развязки от питающей сети

Преобразователь напряжения на микросхеме SR036 (SR037), рис. 28.16, производимой фирмой Supertex, позволяет получить на выходах стабилизированное напряжение 3,3 В (или 5,5 В для микросхемы SR037), и 18 Б, соответственно, при токе нагрузки по каждому из каналов до 30 мА [28.11,28.12].

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты