ПРИБОР ДЛЯ НАЛАЖИВАНИЯ УКВ ЧМ ПРИЕМНИКОВ

August 18, 2014 by admin Комментировать »

И. СВОБОДА (ЧССР)

Структурная схема прибора для налаживания УКВ ЧМ приемников приведена на рис. 1. Прибор состоит из пяти генераторов (i-5), амплитудного модулятора 6, выходного аттенюатора 7 и высокочастотного милливольтметра 8. Высокочастотный генератор 1 перекрывает участок 65… 108 МГц и предназначен для проверки радиочастотного тракта приемника Высокочастотный генератор 2 вырабатывает сигналы на фиксированных частотах 10,7; 6,5 или 5,5 МГц. С его помощью налаживают тракт промежуточной частоты. Высокочастотный генератор 5 представляет собой кварцевый калибратор. Его используют для окончательной градуировки шкапы приемника. Генераторы 1 и 2 можно модулировать как по частоте, так и по амплитуде. Поскольку частотная модуляция осуществляется непосредственно в генерато-

\

Рис. 1

pax, а кпя амплитудной модуляции имеется отдельное устройство, прибор позволяет использовать оба вида модуляции одновременно. Модулирующий сигнал подают либо от встроенных генераторов звуковых частот 3 и 4 (их рабочие частоты соответственно 400 Гц и 2 кГц), либо от внешнего источника через разъем XI. На него, в частности, можно подать пилообразное напряжение от генератора развертки осциллографа, что позволяет наблюдать амплитудно-частотные характеристики трактов ради промежуточной частоты. Внешний источник модулирующего сигнала должен обеспечивать напряжение 1 В на нагрузке 10 кОм. При этом глубина модуляции AM сигнала будет 80%, а девиация ЧМ сигнала не менее 250 кГц на самой низкой рабочей частоте (5,5 МГц).

Выходное напряжение генераторов можно регулировать плавно (переменным резистором R3) и скачками по 20 дБ (аттенюатором 7) в пределах от 10 мкВ до 100 мВ. Оно контролируется высокочастотным милливольтметром (8) с верхним пределом измерения 100 мВ. Его основная погрешность не превышает 5 %. Выходное сопротивление генератора 75 Ом. Налаживаемую аппаратуру подключают к разъему Х2.

Кварцевый калибратор 5 обеспечивает сетку частот от 1 до 108 МГц при амплитуде сигнала не менее 10 мкВ на нагрузке 75 Ом. Этот генератор имеет отдельный выход на разъем ХЗ.

Выбор источника модулирующего сигнала осуществляют переключателем S1, а выбор ВЧ генератора (1 или 2) – переключателем S2. Здесь следует заметить, что именно применение двух независимых генераторов’позволило получить относительно высокую стабильность частоты – 0,1 % после 20 мин прогрева. Это позволило отказаться от ВЧ переключателя диапазонов, хотя и несколько увеличило число используемых в приборе элементов. Достать такой переключатель требуемого качества (например, карусельного типа) трудно, а изготовить его в любительских условиях практически невозможно.

Для питания прибора необходимы два источника стабилизированного напряжения (+12 и+5 В).

Два высокочастотных генератора собраны по схеме [1] с электронной связью (рис. 2). К ее достоинствам относятся устойчивая работа в широком диапазоне отношений L/C, отсутствие отвода у катушки и возможность подключить к общему проводу как один из ее выводов, так и один из выводов переменного конденсатора.

Рис. 2

Еще одно достоинство этого генератора — относительно высокое постоянство амплитуды выходного сигнала при различных воздействиях.

Это обусловлено ограничением ВЧ напряжения на переходах база-коллектор транзисторов генератора. Если эти транзисторы кремниевые, то оно будет примерно 800 мВ. Для уменьшения амплитуды гармонических составляющих в выходном сигнале генератора между ним и нагрузкой необходимо вводить развязывающие каскады (например, повторители). Недостатком генератора, выполненного по схеме рис. 2, является заметное влияние напряжения источника питания на частоту генерируемого сигнала особенно при работе на УКВ, когда общая емкость колебательного контура обычно составляет несколько десятков пикофарад. Иными словами, он требует применения хорошо стабилизированного источника питания.

Рис. 3

Принципиальная схема генератора высокой частоты, перекрывающего участок 65. ..108 МГц, приведена на рис. 3. Собственно генератор собран на транзисторах

Рис. 5

Рис. 6

VI и V2. Для получения требуемого перекрытия по частоте максимальная емкость конденсатора переменной емкости (С4) должна быть около 50 пф. Для частотной модуляции генератора в его колебательный контур через разделительный конденсатор небольшой емкости СЗ включен варикап V4. Рабочую точку этого варикапа (начальное смещение на р-п переходе) задает делитель на резисторах R2 и R3. Элементы С1 и R1 – фильтр низших частот в цепи управления варикапом. Развязывающий каскад – истоковый повторитель на транзисторе V3. .Высокое полное входное сопротивление полевого транзистора позволяет подключить его непосредственно к колебательному контуру генератора.

Режим работы генератора устанавливают подбором резистора R4 (исходное значение 1,5 кОм). Критерием является устойчивая работа генератора во всем диапазоне частот и минимальные (не более 10 %) изменения амплитуды ВЧ напряжения На выходе Генератора при его перестройке в рабочей полосе частот.

Принципиальная схема генератора сигналов промежуточной частоты приведена на рис. 4. Она очень близка к предыдущей и отличается в основном лишь тем, что в развязывающем каскаде применен не истоковый, а эмиттерный повторитель с гальванической связью с генератором. Рабочую частоту выбирают переключателем 57. При переходе с одной рабочей частоты на другую выходное ВЧ напряжение должно изменяться незначительно. Этого добиваются подбором резистора R4 (исходное значение 1,5 кОм).

Оба генератора звуковых частот собраны по одной и той же схеме (рис. 5) и различаются лишь номиналами конденсаторов фазосдвигающей цепи R1—R3, С1—СЗ. Для частоты 1 кГц они должны иметь емкость 6800 пФ, а для частоты 400 Гц — 0,015 мкФ. Достоинство данной схемы генератора состоит в том, что для его устойчивого самовозбуждения нет необходимости тщательно подбирать частотозадающие элементы. Минимальных искажений выходного сигнала (при амплитуде примерно в 1,5 В) добиваются подбором резистора R6.

Для контроля работы ограничителей в тракте промежуточной частоты УКВ ЧМ приемника необходимо модулировать исходный сигнал не только по частоте, но и по амплитуде. Принципиальная схема AM модулятора приведена на рис. 6. В данном случае никаких особых требований к линейности модулятора не предъявляется, поскольку проверяемый с его помощью параметр (подавление паразитной AM модуляции ЧМ сигнала) не должен зависеть от формы модулирующего напряжения. Это позволило ограничиться простыми схемными решениями и промодупировать разделительную ступень (она выполнена на тразисторе VI) изменением напряжения на коллекторе. Каскад на транзисторе V2 обеспечивает усиление модулирующего сигнала до требуемого уровня. Коллекторы обоих транзисторов по высокой частоте соединены с общим проводом через конденсатор С4. Его номинал следует выбрать таким, чтобы этот конденсатор вместе с модуляционным дросселем L1 не образовывал колебательный контур, резонирующий в диапазоне звуковых частот.

Рабочую точку разделительной ступени устанавливают подбором резистора R2 (исходное значение 20 кОм) по минимальным искажениям ВЧ выходного сигнала. Эту операцию можно провести на частоте примерно 5 МГц, наблюдая форму сигнала на экране осциллографа. Большинство доступных радиолюбителям осциллографов позволяют сделать это, поскольку имеют обычно полосу пропускания канала вертикального отклонения луча не менее 5 МГц. Рабочую точку модулирующего каскада устанавливают подбором резистора R5, добиваясь симметричной модуляции ВЧ сигнала (опять же по осциллограммам). Может оказаться целесообразным подобрать и резистор R4 таким, чтобы при входном напряжении звуковой частоты около 1 В коэффициент модуляции был примерно 80 %. Напряжение питания этого узла некритично и может быть любым в пределах от 5 до 12 В.

Декадный аттенюатор выходного высокочастотного сигнала собран из П-обраых звеньев [2]. Характеристическое сопротивление делителя 75 Ом. Его схема приведена на рис. 7. Каждое звено обеспечивает ослабление сигнала на 20 дБ (т. е. в 10 раз). Все четыре звена идентичны друг другу и включаются кнопками с независимой фиксацией. Это позволяет нажатием на соответствующие кнопки установить затухание 0, 20, 40, 60 или 80 дБ. Желательно, чтобы резисторы аттенюатора имели бы сопротивления, отличающиеся от указанных на схеме не более чем на ±2 %. Их можно подобрать из имеющихся в распоряжении радиолюбителя безындукционных

резисторов, измеряя их сопротивление цифровым омметром или на прецизионном мосте. Точную „подгонку” сопротивлений при необходимости осуществляют, стирая твердой резинкой или микронной шкуркой слой у резистора, имеющего сопротивление несколько меньше требуемого. После завершения этой операции обработанную поверхность резистора необходимо покрыть защитным слоем лака.

В кварцевом калибраторе (рис. 8) применено стандартное схемное решение [3]. Точное значение генерируемой частоты устанавливают подстроечным конденсатором С1. Собственно генератор собран на транзисторе VI, а на транзисторах V2 и V3 выполнен формирователь импульсов, в котором для увеличения крутизны их фронта и спада введена положительная обратная связь через конденсатор С4. Его подбирают при налаживании прибора. Если емкость этого конденсатора выбрать достаточно большой, то формирователь начнет выполнять функции регенеративного делителя частоты (на два, три и т. д.).

Точную установку частоты кварцевого калибратора осуществляют либо по цифровому частотомеру, либо по сравнению сигнала калибратора с образцовыми частотами, передаваемыми специальными радиостанциями (в СССР это радиостанции Государственной службы времени и частоты). Заметим, что формирователь в режиме деления частоты на два (когда выходной сигнал будет кратен 0,5 МГц) позволяет поверять калибратор по сигналам станции, работающей на частоте 2,5 МГц.

Напряжение на входе декадного аттенюатора измеряют ВЧ милливольтметром, схема которого показана на рис. 9. Он образован милливольтметром постоянного тока на транзисторах VI.1 и VI.2 и выпрямителем высокочастотного напряжения на диоде V2. Применение интегральной сборки транзисторов позволяет свести к минимуму разбаланс усилителя постоянного тока милливольтметра из-за изменения окружающей температуры. В качестве V2 целесообразно использовать кремниевый диод, предназначенный для смешения сигналов или их детектирования в диапазоне дециметровых волн. Можно здесь применить и некоторые из импульсных диодов, предназначенных для коммутаторов с высоким быстродействием. Температурную компенсацию режима работы диода V2 обеспечивает кремниевый диод V3, смещенный в прямом направлении.

Рабочую точку диода выпрямителя V2 устанавливают подстроечным резистором R9 по максимальной его чувствительности. Балансировку милливольтметра (в отсутствие ВЧ напряжения на входе) производят подстроечным резистором R 7. И, наконец, калибруют прибор, используя подстроечный резистор R8.

Шкала милливольтметра нелинейна и ее изготавливают индивидуально для каждого экземпляра прибора.

Рис. 9

Рис. 10

Рис. 11

Рис. 12

Заметим, что в этом узле вместо интегральной пары транзисторов можно использовать и отдельные транзисторы.

Все узлы (модули) прибора для налаживания УКВ ЧМ приемников выполнены на печатных платах. Расположение печатных проводников и размещение деталей на этих платах показано на рис. 10-16 (рис. 10 – ВЧ генератор на диапазон 65 – 108 МГц, рис.. 11 – ВЧ генератор для проверки-трактов ПЧ приемников, рис. 12 – генераторы звуковой частоты, рис. 13 – амплитудный модулятор ВЧ сигнала, рис. 14 – декадный аттенюатор выходного напряжения, рис. 15 – кварцевый калибратор, рис. 16 – высокочастотный милливольтметр). Плат (рис. 12) следует изготовить две (одну для генератора на частоту 400 Гц, другую – для генератора на частоту 1 кГц). Платы ВЧ генераторов помещают в экраны. Особенно тщательной экранировки требует выходной делитель напряжения: если она будет недостаточной, то

Рис. 14

Рис. 15

возможно прохождение сигнала на выход прибора, минуя этот делитель. В этом случае нельзя будет устанавливать малые уровни выходного напряжения с требуемой точностью. Высокочастотные узлы следует соединять между собой коаксиальным кабелем.

Конструкция прибора может быть достаточно произвольной. Следует лишь обратить особое внимание на конструкцию конденсатора переменной емкости и его крепление. От этого во многом будет зависеть стабильность частоты соответствующего генератора.

Примечание. Характерной особенностью ВЧ генераторов, использованных в приборе для налаживания УКВ ЧМ приемников, является то, что транзисторы периодически входят в насыщение. Подобный режим, как известно, заметно ухудшает их частотные характеристики. Устойчивую работу генератора удается обеспечить лишь в том случае, если примененные в нем транзисторы имеют граничную частоту генерации заметно выше, чем рабочая частота генератора. Вот почему в генераторе на диапазон 65… 108 МГц следует использовать транзисторы малой мощности диапазона СВЧ (серий КТ337, КТ347, КТ363), а для генератора, предназначенного для проверки тракта ПЧ приемников, подойдут обычные высокочастотные транзисторы (серий КТ312, КТ315, КТ3102 и т. д.). Во всех остальных узлах можно применить транзисторы серии КТ315, причем для генераторов звуковых частот статический коэффициент передачи тока у них должен быть не менее 80. Полевой транзистор в генераторе на диапазон 63…103 МГц – КПЗОЗЕ. В ВЧ милливольтметре можно применить транзисторные сборки К1НТ251 или К1НТ661А (причем один из транзисторов сборки с успехом выполнит роль термостабилизирующего диода), или, как уже отмечалось, подобрать пару транзисторов из серий КТ312, КТ315 и т. д. (по статическим коэффициентам передачи тока при фиксированном значении тока коллектора и по напряжению база-эмиттер при фиксированном значении тока базы).

Варикапы KB109G в обоих генераторах можно заменить на отечественные варикапы серий Д901 или КВ102, выпрямительный диод в высокочастотном милливольтметре – на КД407А, КД503Б, КД512А, а термокомпенсирующий диод – на любой кремниевый ВЧ или импульсный диод (КД503, КД521 и т. д.).

Прибор (см. рис. 1) целесообразно дополнить выключателем, который позволял бы выключать амплитудную модуляцию при любом положении переключателя 57. Его можно ввести между подвижным контактом секции 57.5 и узлом б. Кроме того, следует учесть, что источник внешнего модулирующего напряжения не должен иметь постоянной составляющей (она изменит режимы варикапов по постоянному току) и он должен иметь гальваническую связь с общим проводом. Избежать всех этих сложностей позволит обыкновенная разделительная 7?С-цепь, состоящая из конденсатора емкостью 1 мкФ и резистора сопротивлением 10…15 кОм. Как ее подключить, показано на рис. 1 в левом нижнем углу.

СПИСОК ЛИТЕРАТУРЫ

1.        Peltz G. Zweipolige Oscillatoischaltungen fur Parallel und Serienresonanz. – Funk- schau, 1971, №15.

2.        Soupal Z. Delic vf signalu do 90 dB. – Amat^rske radio (A), 1976, № 11.

3.        Vachula V., Kristan L. Oscilatory a generatory. – Praha: SNTL, 1974.

Источник: Конструкции советских и чехословацких радиолюбителей: Сб. статей. – Кн. 3. – М.: Радио и связь, 1987. — 144 с.: ил. – (Массовая радиобиблиотека; Вып. 1113)

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты