Отечественные микросхемы драйверов светодиодов

March 11, 2015 by admin Комментировать »

В табл. 3.12 приведен перечень основных отечественных типов ИМС базовой серии драйверов светодиодов, предназначенных для управления различными типами светодиодов и источников света на их основе.

Таблица 3.12. ИМС драйверов светодиодов, выпускаемых отечественной промышленностью

Таблица 3.12 (продолжение)

Таблица 3.12 (окончание)

Здесь представлены их основные технические характеристики, функциональное назначение, типы корпусов, отличительные особенности. На основании этой таблицы разработчик радиоэлектронной аппаратуры может выбрать конкретный тип микросхемы, в наибольшей степени соответствующий условиям решаемой им технической задачи по созданию высокоэффективного энергосберегающего светодиодного источника.

Действительно, спектр используемых напряжений питания Ucc этих микросхем лежит в диапазоне минимальных значений 2,5—10 В до 20—400 В при частотах работы от 20—30 кГц до 0,8-1,6 МГц. Собственные максимальные токи потребления микросхем лежат в диапазоне от 0,1 мкА (в состоянии) «выключено») до 0,35 мкА, выходные токи светодиодов — от 5 мА до 1,5 А.

Если у большинства перечисленных в табл. 3.12 микросхем имеются зарубежные функциональные аналоги, то у ряда оригинальных микросхем присутствуют дополнительные функциональные возможности, существенно упрощающие их использование в составе законченных блоков и узлов радиоаппаратуры.

Так, например, при использовании в составе электронного блока управления светодиодным светильником микросхемы высоковольтного драйвера с повышенной надежностью типа TKL201 не требуется использовать обязательные для других микросхем внешние электролитические конденсаторы. А в конструкции кристалла этой микросхемы имеются встроенные блоки дополнительной защиты от перегрева кристалла, от повышенного напряжения, от повышенного тока и др. Для реализации этих функций в микросхемах используются компараторы на рМОП и пМОП-транзисторах. Необходимым условием работы компараторов является стабильность их порогов для обеспечения требуемых параметров микросхем (см. цв. вклейку, рис. 3.82*).

Для аппаратуры с батарейным питанием широко применяют ИМС драйверов светодиодов на основе повышающего преобразования, т.е. применяют повышающий импульсный стабилизатор. На рис. 3.83 представлена функциональная схема микросхемы повышающего стабилизатора IZ1937 (драйвера для трех белых светодиодов, питающегося от литий-ионной батареи), предназначенного для управления светодиодами белого цвета, а на рис. 3.84 — типовая схема ее применения в составе устройства светодиодной подсветки.

Рис. 3.83. Функциональная схема микросхемы ΙΖ1937

Рис. 3.84. Типовая схема применения микросхемы ΙΖ1937: VD1 — диод Шоттки; VD2-VD4 — светодиоды

Вход V|N повышающего импульсного стабилизатора для управления светодиодами белого цвета подключается к батарее или аккумулятору. С течением времени любая батарея или аккумулятор разряжается. Напряжение на выводе FB (Fly Back) стабилизатора всегда постоянно, что обеспечивается использованием встроенного широтно-импульсного модулятора, и составляет порядка 100 мВ. Следовательно, стабилизируется и величина тока, протекающего через светодиоды LED1, LED2, LED3. Частота работы стабилизатора составляет 1,2 МГц. Численное значение тока через светодиоды задается номиналом резистора R1 (от 5 мА при R\ = 19,1 Ом до 20 мА при Л1 = 4,75 Ом).

На рис. 3.85—3.87 приведены типовые схемы применения других микросхем IL7150N, IL7150D; IL9910; IZ9921/22/23. Как видно из этих рисунков, функциональные возможности и электрические параметры представленных в табл. 3.12 микросхем позволяют создавать широкий спектр энергосберегающих высокоэффективных светодиодных источников освещения для разных типов выпускаемых промышленностью светодиодов с применением минимального количества внешних по отношению к микросхемам дискретных элементов (резисторов, диодов, конденсаторов, индуктивностей и транзисторов). Более подробную информацию о микросхемах для светодиодной техники и особенностях их практического применения в составе конкретных осветительных приборах можно получить в литературе [36—42].

Рис. 3.85. Типовая схема применения микросхемы IL7150N, IL7150D

Рис. 3.86. Типовая схема применения микросхемы IL9910

Рис. 3.87. Типовая схема применения микросхем ΙΖ9921/22/23

Источник: Белоус А.И., Ефименко С.А., Турцевич А.С., Полупроводниковая силовая электроника, Москва: Техносфера, 2013. – 216 с. + 12 с. цв. вкл.

Оставить комментарий

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты