Записи с меткой ‘электрическом’

БЛОК УПРАВЛЕНИЯ МОЩНОСТЬЮ – основы светомузыки

August 21, 2015

«Наконец-то лучезарный Феб-Аполлон, кроме лиры, …обретает ему принадлежащее по праву искусство, великое искусство Света. У Аполлона лиру сегодня сменит реостат».

(Г. И. Гидони, 1933 г.)

Что бы сказал сейчас энтузиаст искусства световой проекции Г. Гидони. когда современная электроника вооружила светохудожника более мощными и гибкими средствами управления, чем реостат?

» Читать запись: БЛОК УПРАВЛЕНИЯ МОЩНОСТЬЮ – основы светомузыки

Диффузия Li в Ge – основы материаловедения

June 8, 2013

Одним из методов определения зарядового состояния быстро диффундирующих примесных ионов является наблюдение их дрейфа в электрическом поле. Впервые такой эксперимент был проведен на литии в германии. Суть его состоит в следующем (рис. 8.8). Диффундирующая примесь наносится на поверхность германия p-типа проводимости кратковременным вплавлением ее в поверхностный слой. При этом реализуется случай «точечного» источника с неограниченным запасом примесных атомов — капля, вплавленная в кристалл и имеющая радиус много меньший характерных расстояний диффузии. Далее образец прогревается при заданной температуре T время t1 для формирования четкого фронта диффузии, представляющего собой полусферу радиуса r1. Затем образец охлаждается до комнатной температуры, а исходный источник примеси удаляется шлифовкой и специальным травлением. После травления на поверхности образца остается лунка, концентрично с которой находится диффузионная область, обогащенная литием, которая имеет проводимость n-типа. Затем определяется положение p n-перехода, располагающегося на поверхности полусферы радиуса r1, с которой в дальнейшем пойдет диффузия. Граница p n-перехода выявляется, например, химическим окрашиванием в специальном красителе2 или электрическим осаждением титаната бария. Затем образец помещается в постоянное электрическое поле (напряженностью 1–10 В/см), а диффузию проводят при той же температуре T , что и первый раз. Ток, который пропускается через образец (1–10 A), одновременно используется для его нагрева. Ввиду отсутствия источника дальнейшая диффузия примеси происходит аналогично рассмотренному выше случаю диффузии из ограниченного источника (уравнение (8.19)), то есть радиус полусферы увеличивается за счет обеднения областей прилегающих к бывшему источнику. Одновременно все диффундирующие ионы в соответствии со своим знаком заряда q будут дрейфовать в электрическом поле со скоростью Vдр. = µE, где µ — эффективная подвижность ионов, связанная с их коэффициентом диффузии соотношением Эйнштейна µ = (q/kT )D. Таким образом, центр полусферы после соответствующего прогрева переместится в новое

» Читать запись: Диффузия Li в Ge – основы материаловедения

Устройство витков выходе генератора импульсов микросхемы мощности нагрузки напряжение напряжения питания приемника пример провода работы радоэлектроника сигнал сигнала сигналов сопротивление схема теория транзистора транзисторов управления усиления усилитель усилителя устройства частоты