Записи с меткой ‘преобразовательной’

Несколько слов о моточных изделиях в силовых преобразователях

September 5, 2013

О принципах проектирования моточных изделий, использующихся в приборах силовой электроники (сюда входят дроссели, реакторы, трансформаторы) написано достаточно книг, поэтому мы не будем здесь повторяться и подробно разъяснять читателю, что такое идеальные и реальные индуктивные элементы, как вычислять поле в магнитопроводах, как рассчитать в них тепловые потери, как выбрать подходящее сечение обмоточных проводов, какие бывают конструктивные исполнения этих элементов и т. д. Обо всем об этом можно прочитать, например, в [1] и [2]. Наш рассказ посвятим лишь перспективным ферромагнитным материалам и изделиям на их основе, которые целесообразно использовать при проектировании мощных статических преобразователей, а также расскажем о новой технологии компактной «намотки» трансформаторов и дросселей.

» Читать запись: Несколько слов о моточных изделиях в силовых преобразователях

FR-E 500E

August 17, 2013

Уверенно заняла место в группе лидеров рынка преобразовательной техники фирма «Mitsubishi Electric», выпустив линейку статических преобразователей серии FR (рис. 1.2.13). При всем при том, фирма создала несколько серий преобразовательной техники, объединив их общим наименованием, создав, по сути, узнаваемый специалистами брэнд. Серия FR-S 500EC представляет собой ультракомпактное исполнение приборов для управления двигателями в диапазоне мощностей 0,2…3,7 кВт, с питанием от однофазной сети напряжением 240 В или от трехфазной сети напряжением 380…480 В.

» Читать запись: FR-E 500E

СЕКРЕТЫ УДАЧНОГО КОНСТРУИРОВАНИЯ СИЛОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

August 9, 2013

«Век живи — век учись» — гласит одна известная народная мудрость. А вторая народная мудрость добавляет, что «нет предела совершенству». Особенно часто эти мудрые мысли приходят в голову работающим над созданием силовой преобразовательной техники, и вот почему. Как правило, разработка статических преобразователей разбивается на два крупных этапа: схемотехнический и конструктивный. Все, о чем мы говорили до этого момента, относилось к этапу схемотехническому. Сейчас мы допускаем, что уже произведен выбор силовой схемы, подобрана элементная база, разработаны электрические схемы, даже проведено макетирование «на столе» с хорошими результатами. Самое время заняться конструированием прибора, пригодного для промышленного серийного производства: выбрать оболочку (корпус), скомпоновать в объеме корпуса элементы, проложить монтажные провода. Что в этом процессе может быть проще? Казалось, любой конструктор, мало-мальски освоивший проектирование обычных силовых электрических щитов с релейной автоматикой, выполнит эту работу на «раз-два». Но именно так можно «загубить на корню» отличную электрическую схему статического преобразователя, спроектировав некое подобие электрического щита, которое, пока его не включили, кажется вполне работоспособным изделием… К сожалению, итог такого подхода к конструированию серийного преобразователя всегда печален: как правило, собранный по этим чертежам преобразователь работать не будет. И только после получения негативного опыта разработчики начинают думать, а что же, собственно, произошло? В принципе, ничего из ряда вон выходящего не случилось: преобразовательная техника окажется работоспособной только тогда, когда схемотехнические решения получат правильное конструктивное оформление с учетом всех паразитных связей, возникающих при том или ином расположении узлов, а также удастся реализовать меры по отводу тепла.

» Читать запись: СЕКРЕТЫ УДАЧНОГО КОНСТРУИРОВАНИЯ СИЛОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Поговорим о ферритах для силовых преобразователей

August 7, 2013

Теперь вкратце поговорим о ферритах. Эти материалы наиболее часто используются в силовой преобразовательной технике. Они представляют собой поликристаллические многокомпонентные соединения, изготавливаемые по особой технологии, общая химическая формула которых MeFe203 (где Me — какой-либо ферромагнетик, например, Mn, Zn, Ni). Являясь полупроводниками, ферриты обладают высокими значениями собственного электрического сопротивления, превышающего сопротивление сталей в 50 и более раз. Именно это обстоятельство позволяет применять ферриты в индуктивных элементах, работающих на высоких частотах, без опасения резкого возрастания потерь на вихревые токи. Наибольшее распространение в силовой преобразовательной технике получили отечественные марганец-цинковые ферриты марок НМ и никель-цинковые ферриты марок HH. При выборе между этими марками предпочтение следует отдать ферритам марок НМ, поскольку они имеют более высокую температуру Кюри (температуру, при которой ферромагнетики теряют свои ферромагнитные свойства), что позволяет эксплуатировать их при более высоких температурах нагрева индуктивных элементов. Потери на гистерезис у марганец-цинковых ферритов на порядок меньше, чем у никель-цинковых. Ферриты марок НМ обладают высокой стабильностью к воздействию механических нагрузок. Однако электрическое сопротивление ферритов марок НМ меньше, чем ферритов марок HH, поэтому последние могут эксплуатироваться на более высоких частотах.

» Читать запись: Поговорим о ферритах для силовых преобразователей

микросхемы мощности Устройство импульсов питания пример приемника провода витков генератора выходе напряжение напряжения нагрузки радоэлектроника работы сигнал сигнала сигналов управления сопротивление усилитель усилителя усиления устройства схема теория транзистора транзисторов частоты